The "lifetime" problem:

The Executive Summary of the 2010 WMO/UNEP Ozone Assessment cites lifetime problems and problems associated with lifetimes:

- "Evidence is emerging that lifetimes for some important ODSs (e.g., CFC-11) may be somewhat longer than reported in past assessments. In the absence of corroborative studies, however, the CFC-11 lifetime reported in this Assessment remains unchanged at 45 years. Revisions in the CFC-11 lifetime would affect estimates of its global emission derived from atmospheric changes and calculated values for Ozone Depletion Potentials (ODPs) and best-estimate lifetimes for some other halocarbons."
- "Carbon tetrachloride (CCl₄) tropospheric abundances have declined less rapidly than expected. Emissions derived from data reported to the United Nations Environment Programme (UNEP) are highly variable and on average appear smaller than those inferred from observed abundance trends. Although the size of this discrepancy is sensitive to uncertainties in our knowledge of how long CCl4 persists in the atmosphere (its "lifetime"), the variability cannot be explained by lifetime uncertainties."
- "A stronger BDC would:
 - decrease the abundance of tropical lower stratospheric ozone,
 - increase poleward transport of ozone, and
 - could reduce the atmospheric lifetimes of long-lived ODSs and other trace gases."

Issues of global data series of CCl₄

Stable interhemispheric gradient: sources in N-Hemisphere? Global sources: 70 Gg (lifetime: 26 years) Lifetime uncertain (ocean sink, soil sink) Summed regional sources from inverse modelling : ~20 Gg

Ozone Assessment (2007): Overall the budget of CCl_4 remains poorly understood.

M. Ko, P. Newman, S. Reimann, S. Strahan

- Emissions derived from data reported to UNEP are highly variable and on average appear smaller than those inferred from observed trends.
- Discrepancy (~ 40 Gg per year):
 - Cannot be explained by the lifetime. CCI_4 lifetime, $\tau = 28\pm5$ years.
 - Errors in reporting, or errors in analysis of reported data, possible illegal prod.
 - Unknown sources or poorly estimated sinks

The "lifetime" problem

 Lifetimes of many long-lived atmospheric trace gases may be seriously error. At GSFC we have estimated lifetimes using met fields from the GEOS5-GCM coupled chemistry model in an offline GMI simulation.
Our current best models are yielding lifetimes that differ from values estimated from older models and observations.

Compound	GMI (yrs)	WMO 2007 (yrs)
CFC-11	~61	45
CFC-12	106	100
CH ₃ CCI ₃	7.5	5.0
HCFC-22	17.1	12
CCI ₄	59 [*]	26
CFC-113	92.5	85
CH ₄	14.5	-
N ₂ O	120.	114

*The GMI CTM has no ocean sink for CCl₄ so the GMI lifetime is too long. M. Ko, P. Newman, S. Reimann, S. Strahan

History of lifetimes in previous ozone assessments

M. Ko, P. Newman, S. Reimann, S. Strahan

Started lifetime re-evaulation

Stratospheric Processes And their Role in Climate

Scope of the re-evaluation

- Estimate the numerical values for lifetimes
- Estimate the uncertainties for numerical values for lifetimes
- Assess the influence/use of different lifetime definitions (e.g. steady-state /instantaneous lifetimes)
- Assess lifetime changes associated with the changing climate

	Compound	Formula	Lifetime (yrs)	BC
Prior	ity 1:			
1.	CFC-11	CCl ₃ F	45	We
2.	CFC-12	CCI ₂ F ₂	100	
3.	Carbon Tetrachloride	CCI	26	
4.	Methyl Chloroform	CH ₃ CCl ₃	5.0	
5.	HCFC-22	CHCIF,	12	
6.	Nitrous oxide	N ₂ O	114	
7.	Methane	CH	8.7 [*] (lifetime)	
			12.0 [*] (pulse de	сау
Prior	ity 2:			
8.	Halon-1211	CBrClF ₂	16	
9.	Halon-1301	CBrF ₃	65	
10.	CFC-113	CCI,FCCIF,	85	
11.	CFC-115	CF ₃ CCIF ₂	1020	
12.	HFC-134a	CH ₂ FCF ₃	13.4	
13.	HFC-143a	CF ₃ CH ₃	47.1	
14.	HFC-23	CHF ₃	222	
Prior	ity 3:			
15.	CFC-114	CCIF ₂ CCIF ₂	190	
16.	HCFC-141b	CH ₃ CCl ₂ F	9.2	
17.	HCFC-142b	CH ₃ CCIF ₂	17.2	
18.	Methyl Chloride	CH ₃ Cl	1.0	
19.	Methyl Bromide	CH ₃ Br	0.8	
20.	Halon-1202	CBr ₂ F ₂	2.9	
21.	Halon-2402	CBrF ₂ CBrF ₂	20.	
21.	HFC-125	CHF ₂ CF ₃	28.2	
			M. Ko, P. Newman, S. Rei	mann, S. Strahan

Lifetimes to reevaluate

Structure of the lifetime re-evaluation

- Executive Committee: Malcolm Ko, Susan Strahan, Stefan Reimann, Paul Newman
- Chapter 1: importance of global lifetimes, history of lifetimes
 - Lead authors: Executive Committee
- Chapter 2: Theory of estimating lifetimes using models and observations
 - Lead authors: Alan Plumb, Richard Stolarski
- Chapter 3: Update on kinetic data that determined lifetimes (cross sections etc.)
 - Lead authors: James Burkholder, Wahid Mellouki
- Chapter 4: Inferred lifetimes from observed trace-gas distributions
 - Lead authors: Andreas Engel, Elliot Atlas
- Chapter 5: Model estimates of lifetimes
 - Lead authors: Martyn Chipperfield, Qing Liang
- Chapter 6: Summary
 - Lead authors: chapter leads and executive committee

Timetable

- Feb. 2011, Presentation to SPARC SG
- Feb. 2011, Comments solicited from scientific community on scope
- Apr. 2011, Scope redefined, author teams formed.
- May 2011, Chapter outlines drafted
- Jul. 2011, Begin of model simulations

Dec. 2011, model simulation completed.

May. 2012, 1st drafts complete; circulated for internal review.

Sep. 2012, 2nd drafts complete, start peer review.

Dec. 2012, 3rd draft complete.

Jan. 2013, Open meeting with reviewers Feb. 2013, Final draft, including Executive Summary,

Apr. 2013, Document released

The lifetime of a specie changes with time

- Fleming et al. (ACPD, 2011) Figure 13
- Black lines show lifetimes for N₂O, CFC-11, CFC-12, and CCl₄
- Red lines are with a fixed loss rate for 1960 values.
- Green lines use chemistry and transport fixed at 1960 values illustrating the effect of the changing atmospheric burden.

•	Alan Plumb	Massachusetts Institute of Technology	USA
•	Rich Stolarski	Johns Hopkins University	USA
•	Andreas Engel	University of Frankfurt	Germany
•	Michaela Hegglin	University of Toronto	Canada
•	Qing Liang	Universities Space Research Association	USA
•	Michael Prather	University of California, Irvine	USA
•	John Pyle	University of Cambridge	UK
•	Michael Volk	University of Frankfurt	Germany
•	Darryn Waugh	Johns Hopkins University	USA

Jim Burkholder	NOAA	USA
Wahid Mellouki	ICARE/CNRS	France
Eric Fleming	Space Systems and Applications, Inc.	USA
Christian George	CNRS/Université Claude Bernard Lyon 1	France
Dwayne Heard	University of Leeds	UK
Charley Jackman	NASA Goddard Space Flight Center	USA
Matthew Johnson	University of Copenhagen	Denmark
Mike Kurylo	Universities Space Research Association	nUSA
Tim Wallington	Ford Corporation	USA
	Jim Burkholder Wahid Mellouki Eric Fleming Christian George Dwayne Heard Dwayne Heard Charley Jackman Matthew Johnson Mike Kurylo Tim Wallington	Jim BurkholderNOAAWahid MelloukiICARE/CNRSEric FlemingSpace Systems and Applications, Inc.Christian GeorgeCNRS/Université Claude Bernard Lyon 1Dwayne HeardUniversity of LeedsCharley JackmanNASA Goddard Space Flight CenterMatthew JohnsonUniversity of CopenhagenMike KuryloUniversities Space Research AssociationTim WallingtonFord Corporation

•	Elliot Atlas	University of Miami	USA
•	Andreas Engel	University of Frankfurt	Germany
•	Peter Bernath	University of York	UK
•	Harald Bönisch	University of Frankfurt	Germany
•	Lambert Kuijpers	Eindhoven University of Technology	Netherlands
•	Johannes Laube	University of East Anglia	UK
•	Ken Minschwaner	New Mexico Inst. of Mining & Technology	USA
•	Steve Montzka	NOAA	USA
•	Simon O'Doherty	University of Bristol	UK
•	Ron Prinn	Massachusetts Inst. of Technology	USA
•	Matt Rigby	Massachusetts Inst. of Technology	USA
•	Sue Schauffler	National Center for Atmospheric Research	USA
•	Michael Volk	University of Frankfurt	Germany
•	Shari Yvon-Lewis	Texas A&M University	USA

•	Martyn Chipperfield	University of Leeds	UK
•	Qing Liang	Universities Space Research Association	USA
•	Slimane Bekki	LATMOS/IPSL/CNRS	France
•	Anne Douglass	NASA Goddard Space Flight Center	USA
•	Doug Kinnison	National Center for Atmospheric Research	USA
•	David Plummer	University of York	Canada
•	Michael Prather	University of California, Irvine	USA
•	Björn-Martin Sinnhuber	University of Bremen	Germany