

LMATIETEEN LAITOS Meteorologiska institutet Tinnish meteorological institute

Modeling Tropospheric Impacts of the Arctic Ozone Depletion 2011

Alexey Karpechko Judith Perlwitz Elisa Manzini

Stratospheric ozone and troposphere

- There is a strong two-way coupling between stratospheric and tropospheric circulation anomalies
- Ozone anomalies impose radiative forcing which can alter stratospheric and tropospheric circulation
 - ✓ In the Southern Hemisphere, Antarctic ozone hole caused a poleward shift of the tropospheric jet during summer over the last three decades
- The largest ozone depletion in the Arctic occurred in spring 2011
- Did Arctic ozone depletion 2011 impact the tropospheric circulation?

Arctic winter/spring 2011

- Polar vortex was very strong from January to early April (see e.g. Manney et al. 2011, Hurwitz et al. 2011, Strahan et al. 2013)
- Tropospheric circulation was characterized by positive NAO/NAM anomalies
- April NAO/NAM indexes was record large in NOAA/CPC records since 1950 (2.48/2.27 std)

NAM index

(from Hu and Xia 2013)

Model experiments

Four experiments with AGCM ECHAM5 (T63L47) model:

	Duration	SST/SIC	O3
CONTR	50 years	AMIP2 climatology	Fortuin-Kelder climatology
R-03	50 runs from Sep 1 to Apr 30	As in CONTR	Fortuin-Kelder + MERRA 2010/2011 anomaly
R-SST	50 runs from Sep 1 to Apr 30	AMIP2+HadISST 2010/2011 anomaly	As in CONTR
R-ALL	50 runs from Sep 1 to Apr 30	AMIP2+HadISST 2010/2011 anomaly	Fortuin-Kelder + MERRA 2010/2011 anomaly

Results reported in Karpechko, Perlwitz and Manzini, submitted to JGR

Prescribed ozone anomaly

> Prescribed ozone anomalies include both chemistry and transport effects

➢ Prescribed anomaly peaks in mid-March, about two weeks earlier than the observed one → the dynamical response may also be expected earlier

Prescribed SST anomaly

January-March

La Niña conditions

> Positive SST anomalies in sub-polar Pacific (see Hurwitz et al. 2011,2012)

Mid-latitude (50°-70°N) zonal wind response

- Strengthening of the westerly stratospheric winds and downward anomaly propagation to the troposphere in March/April is simulated in all experiments
- ➤ The strongest response is simulated in the R-ALL experiment
 - *R*-ALL response is stronger than the sum of *R*-O3 and *R*-SST, ask for more details
- E.g. the mid-March/mid-April response at 1000hPa: R-O3 -0.02m/s; R-SST 0.17m/s; R-ALL 0.33m/s

500-hPa NAM response, mid-March/mid-April

- > The probability of large positive NAM events (>1 σ) is strongly enhanced in R-ALL.
- > The observed event is > 2σ . Which conditions do enhance the probability of extreme events?

Extreme NAM events

- Forced positive NAM signal appears in lower stratosphere/troposphere in mid-March
- During most extreme simulated positive NAM events, a positive NAM signal *pre-existed* in lower stratosphere/troposphere before mid-March, as did happen in winter/spring 2011

9

➤ A record large positive tropospheric NAM event was observed in April 2011 following the occurrence of the record large Arctic ozone depletion

> ECHAM-5 forced by the observed ozone anomaly simulates only weak tropospheric circulation response

 \succ When the model is forced by both ozone and lower boundary (SST/SIC) anomalies, a significant, month-lasting shift of the tropospheric circulation towards a positive NAM phase, and increased probability of occurrence of large positive NAM events are simulated

≻R-ALL response is stronger then the sum of R-O3 and R-SST

 \geq Extreme magnitude of the observed tropospheric NAM event was likely related to a preconditioning

Prediction of extreme tropospheric anomalies such as that in April 2011 requires models that include interactive stratospheric ozone chemistry