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Solar variability: the complex picture

Drivers of solar variability: what we know and
what we don’t know

Solar forcing and climate impact: Recent
modeling results

Particle effects: Recent observational efforts
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 Which mechanisms (top-down, bottom-up,
particles) are important for solar influences on
climate?

* Can they be constrained by observations?

* What is included in current climate models to
investigate solar influences on climate?



what we know and what we don’t know...

Solar drivers ‘- Radiation Particles

Gray et al. , 2010
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“Halloween” SPE: Comparison of modeled O; and NOy response to observations (MIPAS)

0, NOy

70-90N 40-90N

Funke et al. (2011)

Good representation in atmospheric models.
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Uncertainties in modeled NOx depositions and hence
representation of EPP indirect effects (IE).



ACE NOx, NH SABER T, 70-83°N

( Pronounced dynamical variability in
the NH related to wave activity:

Very strong EPP-IE after SSWs and
( associated “elevated stratopause” (ES)
events.

Randall et al. 2009, Holt et al., 2013

See next talks of Anne Smith and
“ Gloria Manney

Randall et al., 2009 Smith et al., 2009




MIPAS

B N AN

Models fail to reproduce NOx descent during the 2009 NH winter with
SSW and associated ES event



“simplified” view, following the compilation of “outstanding questions”
at the last HEPPA-SOLARIS workshop, Boulder 2013.

Solar protons X

Auroral electrons X
MEE/REP

CR on chemistry

CR on cloud formation X

Included in CCMVal and CCMI
Included in CCMI
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,Jop-Down“ SSI induced mechanism has been reproduced in transient CCM simulations



Winter: DJF CESM (ESM) WACCM 3.5 (CCM) ERA40/ERA-I (,,0bs”)

SLP Thieblémont et al. (2014) Chiodo et al. (2012) Ineson et al. (2011)
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« Significant regional solar changes reproduced in transient CCM simulations
« Stronger signal with coupled ocean (ESM) which is closer to observations



See Poster Session B

* SolarMIP compares the atmospheric
and oceanic responses to the solar
forcing in all the CMIP 5 models. This
is done in the same way as in S-RIP.

e This figure shows the annual
temperature response to a typical 11-
year solar cycle, from all CMIP-5
models which resolve the
stratosphere well.

 Most models capture the observed
warming at the stratopause, but few
models capture the warming in the
tropical lower stratosphere.
* Why not?

(Mitchell, Misios, Gray, Tourpali, Matthes + more)
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Estimates from a multiple linear
Regression Analysis Observed Mean
Sea Level Pressure 1870-2010

HadSLP2 dataset
Gray et al. JGR Dec 2013

Regression included solar, volcanic ENSO,
QBO indices plus linear trend.

Plot shows different lag times i.e. surface
response lags the solar index.

positive NAO-like
response at 3-4 years, suggests a solar
influence over Europe.

white (black) dots: 99% (95%) stat. significance
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See Poster Session D

EMAC, DJF surface NCEP reanlysis, DJF SOCOL, surface temp.

press. changes (EPP- surface T changes changes (EPP-no EPP),

no EPP), no SSW years  (high Ap —low Ap) 1960-2010 annual
average

Baumgaertner et al., 2010 Seppdild et al., 2009 Rozanov et al., 2012
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Recent observational efforts
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SRS NSRS o D MLS OH (~75 km) versus MEPED/POES electron counts
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Courtesy: S. Bender (in preparation)

NH polar tropics SH polar

Good overall agreement on annual and inter-annual scales
(despite large short-term fluctuations caused by instrument precision,
sampling, and geomagnetic variability)




Funke et al., submitted
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SSW/ES impact SPE impact red symbols: MIPAS
black lines: model

blue lines: weighted Ap



Solar forcings: remaining issues with SSI and particle flux observations, CR-cloud
coupling still uncertain. Description of vertical coupling (EPP-IE) in the USM is
challenging.

Interactive chemistry & ocean/atmosphere coupling show considerable progress
for studying the impact of solar variability on climate.

Recent transient simulations can simulate solar signal (radiative and particles) in
reasonable agreement with observations.

ESMs offer the opportunity to perform sensitivity experiments to study
interactions between solar variability and other forcing factors, i.e. Solar-QBO
relation, North Atlantic air/sea coupling, tropical Pacific signal and ENSO aliasing.

Progress in constraining mesospheric and stratospheric EPP impact by recent OH
and NOy observations.



