

The SPARC Water Vapor Assessment II - Quality assessment of water vapor data records from satellites

<u>G.P. Stiller</u>, S. Lossow, M. Kiefer, W.G. Read¹, J. Urban², K.H. Rosenlof³ ¹JPL/CalTech, Pasadena, California; ² Chalmers University, Gothenburg, Sweden; ³ NOAA, Boulder, Colorado

Institute for Meteorology and Climate Research (IMK-ASF)

www.kit.edu

١SF 0.25

. . .

	Available	e Sate	llite Da	ata Recor	ds		toc		
		1980-	1990	1990-2000	20	00-2010	20	10-2020	
nders	SAGE II+III				SAGE				
	HALOE								
	MLS(UARS+Aura)								
	POAM II+III								ĸ
	SMR								
	MIPAS								
SOU	SCIAMACHY								
qu	GOMOS								
	ACE-FTS								
	SOFIE								
	CLAES								-
	ISAMS								
UTH	IASI								
	TES								
	TOVS								
	AIRS								

SPARC WAVAS-II satellite data quality assessment: Aims and scope

- Quantitative quality assessment of the new satellite data sets and improved data version of previous satellite data sets
- Be as inclusive as possible
- 4 main questions:
 - How do satellite data compare to frost point hygrometer and groundbased microwave data?
 - How do coincident satellite data compare to each other for certain regions and time periods?
 - How is temporal variability represented in the satellite data sets?
 - How is upper tropospheric humidity represented in limb and nadir sounding satellite data?
- Vertical range ~250 hPa to 0.1 hPa
- Assess quality of water vapor isotopologue data sets as well (mainly HDO/δD)
- Not considered here: relative humidity/supersaturation/cloud formation
- Focus strictly on satellite data records; no intercomparison of ground-based, aircraft, balloon-borne instruments

data

Comparisons to frost-point hygrometer

Site	Period	Instrument	PI's
Bandung	2003-2004	CFH	Masatomo Fujiwara
Beltsville	2006-2011	CFH	Holger Vömel, Dave Whiteman
Biak	2006-2012	CFH	Fumio Hasebe
Boulder	1980 - present	CFH / NOAA FPH	Dale Hurst, Sam Oltmans, Holger Vömel
Fort Sumner	1996 - 2004	NOAA FPH	Sam Oltmans
Hanoi	2007-2011	CFH	Shinja Ogino
Hawaii	2002 - present	CFH / NOAA FPH	Dale Hurst, Holger Vömel
Heredia	2005 - present	CFH	Holger Vömel, Selkirk
Huntsville	2002	NOAA FPH	Holger Vömel
Kiruna	1991 - 2003	NOAA FPH	Therry Deshler, Holger Vömel
Kototabang	2007 - 2008	CFH	Masatomo Fujiwara
Kunming	2009 - 2012	CFH / NOAA FPH	Jianchun Bian
La Reunion	2005 - 2011	CFH	Holger Vömel
Lauder	2003 - present	NOAA FPH	Dale Hurst
Lhasa	2010, 2013	CFH	Jianchun Bian
Lindenberg	2006 - present	CFH	Holger Vömel
Midland	2004	CFH	Holger Vömel
Ny Alesund	2002 - 2004, 2013 - present	CFH / NOAA FPH	Marion Maturili
Research Vessel Mirai	2011	CFH	Junko Suzuki
San Cristobal	1998 - 2007	CFH / NOAA FPH	Holger Vömel
Sodankyla	1995 - present	CFH / NOAA FPH	Rigel Kivi, Holger Vömel
Southern Great Plains	2003	CFH	Holger Vömel
Table Mountain	2006 - 2009, 2013	CFH / NOAA FPH	Thierry Leblanc, Holger Vömel, Dale Hurst
Tarawa	2005 - 2010	CFH	Masato Shiotani
Tengchong	2010	CFH	Xiangdong Zheng
Watukosek	2001 - 2003	NOAA FPH	Masatomo Fujiwara
Yangjiang	2010	CFH	Holger Vömel

Coincidence criteria: Time difference < 12h and distance < 1000 km (circle) Note: each satellite or CFH/FPH profile can be chosen multiple for a colocation

⁵ 16 January 2014 SPARC-GA, Queenstown, New Zealand, 12-17 January 2014

Intercomparison of co-incident satellite profiles

- Comparison on basis of co-incident observations avoids sampling artifacts due to e.g. density of coverage etc.
- A major intercomparison problem coming from different tropopause/hygropause heights can be widely avoided/diminished by restriction to co-incident observations
- Standard coincidenc criteria: < 1000 km, < 24 h; however, strongly reduced for dense samplers (e.g. < 250 km, < 6 h for MIPAS vs. MLS)</p>
- Only the best coincidence is used (weighted by normalized sum of temporal and spatial distance)
- Some data sets require individual filtering (remove unphysical outliers)
- Examples for: global, certain latitude bands, Asian summer monsoon region, West Pacific etc.

Global, all year, reference: Aura/MLS

Water vapour comparisons for Aura/MLS

Considered: Day of year: 1 - 366 Latitude: 90 S - 90 N Longitude: 180 W - 180 E

Creation Time: 02-12-2013 19:54:45 LT

Creation Time: 02-12-2013 19:54:50 LT

Water vapour comparisons for Aura/MLS

Tropics, MAM, reference: MIPAS/Envisat

Water vapour comparisons for Envisat/MIPAS

Considered: Day of year: MAM_Latitude: 15 S - 15 N_Longitude: 180 W - 180 E

Creation Time

02-12-2013 19:23:44 LT

Asian Monsoon, JA, reference: Aura/MLS

Creation Time

02-12-2013 19:55:17 LT

Water vapour comparisons for Aura/MLS

West Pacific, DJF, reference: Aura/MLS

Water vapour comparisons for Aura/MLS

Considered: Day of year: DJF Latitude: 20 S - 20 N Longitude: 180 W - 120 W

Creation Time: 02-12-2013 19:55:21 LT

NH/SH polar winter, reference: Aura/MLS

Representation of temporal variation

Representation of temporal variation – comparison vs. Boulder FPH time series

Boulder FPH SMR1 SMR2 MIPAS ACE-FTS HALOE MLS

Seasonal variation: amplitude and phase

Amplitude 0 – 1 ppmv

Month of seasonal maximum Jan – Dec

¹⁷ 16 January 2014 SPARC-GA, Queenstown, New Zealand, 12-17 January 2014

18

Comparison of amplitudes of seasonal variation among instruments

SAGE II

MIPAS

16 January 2014 SPARC-GA, Queenstown, New Zealand, 12-17 January 2014

AIRS v6 (L3), ACE FTS, MIPAS IMK, Odin SMR, MLS v3

AIRS v6 (L3), ACE FTS, MIPAS IMK, Odin SMR, MLS v3

Summary and conclusions (so far)

- Above the hygropause many satellite instruments agree within ±10% with frost point hygrometer data.
- Sharp and deep hygropauses cannot be resolved by any satellite instrument.
- Below the hygropause deviations are much larger, with negative and positive biases of 40% and more.
- Inter-satellite comparisons agree often within 10%, at least above the hygropause.
- Large deviations below the hygropause; related to differing hygropause altitudes despite coincident observations?
- Temporal evolution: representations are different in absolute terms (bias, amplitude of seasonal cycle); agreement for de-biased, deseasonalized time series ist much better.
- UTH: Latitudinal cross-sections are well reproduced by most instruments; time-series differ significantly
- Time-line: work to be finished and paper submitted by end of 2014 \bigcirc
- ²¹ 16 January 2014 SPARC GA, Queenstown, New Zealand, 12-17 January 2014

Global, all year, reference: MIPAS/Envisat

Water vapour comparisons for Envisat/MIPAS

Considered: Day of year: 1 - 366 Latitude: 90 S - 90 N Longitude: 180 W - 180 E

Creation Time:

02-12-2013 19:09:38 LT