

The Stratospheric

3

ra

Mark P. Baldwin University of Exeter Thomas Birner Colorado State

Observed Average Surface Pressure Anomalies (hPa)

60 days following sudden warmings

60 days following cold vortex events

Contours in hPa

From Baldwin et al., Science 2003

• We do not have an understanding of the dynamics of stratosphere-troposphere coupling.

- We do not have an understanding of the dynamics of stratosphere-troposphere coupling.
- Any explanation of stratosphere—troposphere coupling must account for the main observations:

- We do not have an understanding of the dynamics of stratosphere-troposphere coupling.
- Any explanation of stratosphere—troposphere coupling must account for the main observations:
- The surface pressure pattern associated with variations in the strength of the polar vortex looks like the NAM/NAO—the maximum surface response is near the North Pole.

- We do not have an understanding of the dynamics of stratosphere-troposphere coupling.
- Any explanation of stratosphere—troposphere coupling must account for the main observations:
- The surface pressure pattern associated with variations in the strength of the polar vortex looks like the NAM/NAO—the maximum surface response is near the North Pole.
- 2) The relationship between vortex strength and the NAM/NAO is linear, so the tropospheric effects last as long as those in the stratosphere.

FIG. 4. Schematic of the bending of isentropic surfaces (labeled θ_0 , θ_1 , and θ_2) toward a positive potential vorticity anomaly. The arrows represent winds associated with the potential vorticity anomaly, becoming weaker away from the anomaly.

Diagram from Ambaum and Hoskins J Climate (2002).

Create an index of vortex strength as defined by PV at 600K (20-25 hPa).

Correlation during winter (JFM) between the 600K PV index and zonal-mean temperature. The JFM daily correlation between PV index and polar cap tropopause T anomalies is **0.90**.

Regressions on -PV530K (JFM): TP pressure (colors), sfc pressure (contours)

Tropospheric amplification

• The polar column of air, which extends into the troposphere, moves in lockstep with the strength of the polar vortex above.

- The polar column of air, which extends into the troposphere, moves in lockstep with the strength of the polar vortex above.
- A direct consequence is that the troposphere is physically compressed and expanded, altering lapse rates and well as zonal winds.

- The polar column of air, which extends into the troposphere, moves in lockstep with the strength of the polar vortex above.
- A direct consequence is that the troposphere is physically compressed and expanded, altering lapse rates and well as zonal winds.
- The surface NAM response is larger than would be expected from simple mass arguments.

- The polar column of air, which extends into the troposphere, moves in lockstep with the strength of the polar vortex above.
- A direct consequence is that the troposphere is physically compressed and expanded, altering lapse rates and well as zonal winds.
- The surface NAM response is larger than would be expected from simple mass arguments.
- I suggest that tropospheric changes (to jets, the NAM, baroclinic eddies, etc.) will be shown to be consequences of the plunger mechanism.

- The polar column of air, which extends into the troposphere, moves in lockstep with the strength of the polar vortex above.
- A direct consequence is that the troposphere is physically compressed and expanded, altering lapse rates and well as zonal winds.
- The surface NAM response is larger than would be expected from simple mass arguments.
- I suggest that tropospheric changes (to jets, the NAM, baroclinic eddies, etc.) will be shown to be consequences of the plunger mechanism.
- Zonal asymmetries? Souther Hemisphere? Details of jet shifts?.....