### Tropical and Extratropical Connections Associated with QBO and ENSO Masakazu Taguchi Aichi University of Education Kariya, JAPAN ### I will discuss several issues in two parts: (1) QBO variations, (2) NH/SH changes with QBO/ENSO #### **Outline** ■ Part 1: QBO variations and dynamics: Stalling feature Annual synchronization **ENSO** modulation ■ Part 2: NH and SH changes with QBO and ENSO: MSSW frequency in NH winter Stationary wave structure in SH spring # Part 1 QBO variations ### Part 1 discusses issues of QBO variations that are long or recently known #### **Outline for QBO part** - Basics (stalling events) - How do these occur? - Annual synchronization How does this occur? (Taguchi and Shibata 2013) - **■** ENSO modulation - Does QBO modulates with ENSO? (Taguchi 2010) - \* I exclude other effects of solar cycle, volcanic eruptions, and global warming (trend), etc. Ref.: I will mention other relevant references below. ## Part 1 Data and method ### We use 3 kinds of data to discuss QBO variations in Part 1 #### **Data** - Equatorial zonal wind data (cf. Naujokat 1986) Complied from radiosonde obs., and archived at FUB Monthly data from 1953 to 2008 (1953 to 2012 in places) Available at 7 levels from 70 to 10 hPa - ■JRA-25/JCDAS reanalysis data (Onogi et al. 2007) 1979-2008, 2.5x2.5, L23 Use daily mean data to get monthly mean data: [U], [T], [V]res, [W]res, EPFD, etc. - ■MRI CCM simulations (Shibata and Deushi 2005, 2008) REF-1: 5 runs x 25 years (1980 to 2004) forced with obs. SST We extract QBO signals/anomalies (A') by removing clim. seasonal cycle and apply 5-mo. running mean ### We use the TEM zonal momentum equation to diagnose the budget of QBO variations #### **Diagnosis** ■ Governing equation (TEM zonal momentum equation) T = M + V + D + X T: tendency of mean zonal wind M, V: meridional and vertical advection D: resolved wave driving X: all other effects (including effects of unresolved waves) - ■TEM diagnosis using JRA-25 data - ♦ Use JRA-25 monthly mean data to calculate all terms, except for X X is calculated as a residual of all other terms - **Examine** stalling feature and annual synchronization Ref.: Andrews et al. (1987), Monier and Weare (2011) # Part 1 Observations Basics (stalling feature) QBO is characterized by more irregular propagation of ELY shear zones (stalling events); how do these occur? Additional questions: ♦ How/why is the variability in WLY shear zones smaller w/o stalling? ♦ How/why is the variability in amplitude much smaller? Ref.: Cf. Baldwin et al. (2001) ### We compare "stalling" and "smooth" groups: each consists of 3 cases of descending ELY ### Stalling cases have weakly negative tendency, contributed by vertical advection QBO U', tendency, and vert. adv. in 5N/S wrt 20hPa ELY onset #### Vertical wind shear and upwelling show consistent differences even at upper levels for negative lag QBO [U]<sub>z</sub>' and [W]res' in 5N/S wrt 20hPa ELY onset The stronger vertical advection for stalling Is contributed by combinations of: ♦ QBO [U]z' and time-constant [W]res Ref.: None $\diamondsuit$ time-constant [U]z and QBO [W]res' Stronger QBO signal preceding at upper levels will make the processes operate stronger for stalling near 30 hPa #### Speculation for stalling of ELY and vertical shear Stalling around 30hPa, in case these have stronger preceding signals ### We will examine whether/how the annual cycle of the upwelling plays a role - Conventional view Stronger upwelling for NH winter plays a role - We will examine the role in the momentum budget Vertical advection = - [U]z [W]res $[U]z = [U]z^{LTM} + [U]z^{annual} + [U]z^{QBO}$ [W]res = [W]res<sup>LTM</sup> + [W]res<sup>annual</sup> + [W]res<sup>QBO</sup> \*LTM: long time mean (time-constant) Differences in vert. adv. are contributed by QBO signal and LTM field in JRA-25 data # Part 1 Observations Annual Synchronization #### It's long known that QBO is somewhat synchronized with annual cycle; how does this occur? #### Seasonal distributions of U reversals at 50hPa - Existing studies examine the mechanism using idealized models Dunkerton (1990), Kinnersley and Pawson (1996), Hampson and Haynes (2004) - We re-examine this feature thru a diagnostic analysis of the JRA-25 and CCM data ### Zonal wind reversals (for NH spring/summer) tend to accompany large tendencies and residual #### [U]'and tendency in 5N/S, 50hPa for '79-'08 Ref.: Shades in (a) show frequencies above 10%, with 10% increment. ### The tendencies T for the annual synchronization largely balances with X Bar chart for TEM diagnosis when tendency is large from April to June (top/btm 30 %) 5N/S, 50hPa Suggest role of unresolved, small scale waves in annual synchronization \*I'll mention other effects in examining CCM data # Part 1 Observations ENSO-modulation ### It was long hypothesized that QBO modulates with ENSO, but existing results seemed inconclusive #### QBO-related processes Baldwin et al. (2001) - Hypothesis ENSO (SST variations) - →Convection - →equatorial wave activity - (→BD circulation) - $\rightarrow$ QBO - Existing studies - ♦ Many seemed inconclusive - ♦ These seem more relevant: Geller et al. (1997) Maruyama and Tsuneoka (1988) ### Composite analysis shows weaker amplitude and faster phase propagation of QBO for EL #### **Modulation by ENSO** FUB composite U' wrt WLY peak at 50hPa Generally robust regardless of : season and QBO phase Ref.: LA/EL are based on cold/warm episodes by NOAA/CPC. About bottom or top 25% samples are LA/EL. Composites are wrt Ψ=116 deg., center of W group. Taguchi (2010,JGR) ### How does the ENSO-modulation of QBO occur? we can speculate about role of wave driving - ENSO-modulation of QBO Faster phase progression (and weaker amplitude) for EL - ■ENSO-modulation of BDC BDC, or tropical upwelling is stronger for EL (e.g., Randel et al. 2009; Taguchi 2010) - ⇒We speculate: wave driving for QBO must be stronger during EL for the faster QBO progression under the stronger BDC \*Poster (D) by Prof. Marvin Geller ENSO modulation of QBO changes with decadal or longer scales ENSO-QBO connection affects tropical CPT temperatures ## Part 1 MRI CCM simulations ### The MRI CCM (REF-1) reasonably simulates a QBO-like oscillation, with some differences #### **QBO in MRI CCM** Time-height sections of equatorial zonal wind (m/s) Stalling of ELY phase in simulation Ref.: Shibata and Deushi (2005,2008) ### Modeled QBO underestimates amplitude, while well reproducing phase progression rate #### **Basic properties of CCM QBO** PDFs of $|\psi|$ and $\psi'$ for FUB and CCM data #### Modeled QBO shows seasonally uniform distributions of wind reversals and NOGWF #### Annual synchro. of CCM QBO FUB 1958-2008 JRA-25 1979-2008 ### The absence of annual synchro. may be due to time-constant NOGWF source or other factors - ■MRI CCM simulations Do not reproduce annual synchronization Seems consistent with a time-constant source for NOGWF ⇒But, we will need to further examine other factors: tropical tropospheric wind (filtering) source level of NOGWF SAO-QBO connection - ⇔Poster (D) by Dr. Thomas Krismer Role of SAO (and annual cycle of upwelling) - Annual synchro. reproduced in CCM using Hines scheme Ref.: None ### We have examined the three aspects of QBO: stalling, annual synchro., and ENSO modulation #### **Summary: QBO part** - Results and speculations wave driving and vert. adv. play roles depending on the aspect of interest - ♦ Basics, stalling of ELY phase feedback among zonal wind, tendency, vertical advection triggered by stronger QBO signals at upper levels - ♦ Annual synchronization role of small scale waves (GWs) - ♦ ENSO modulation weaker amplitude and faster propagation for EL role of wave driving - Future plan We will seek to better organize the results into a clear, firm picture # Part 2 NH/SH changes with QBO and ENSO #### Part 2 discusses changes in NH winter/ SH spring stratosphere with QBO and ENSO #### **Outline for extratropical part** - NH, DJF in obs. and MRI CCM - ♦ Seasonal (DJF) mean states Existing studies have shown nonlinear changes - ♦ Variability, or MSSWs How does MSSW frequency change with the two factors? How does a CCM simulate the NH winter changes? - ■SH, SON in obs. - ♦ Seasonal (SON) mean states Does the SH also change nonlinearly with NINO3 and QBO? Ref.: I'll mention relevant studies below. # Part 2 Data We use NCEP/NCAR reanalysis data etc. for real world, and MRI CCM simulation for comparison #### **Data** - Observations: 1957/58-2012/13 - ♦ NCEP/NCAR reanalysis data - ♦ENSO indices: NINO3.4 or NINO3 SST (CPC/NOAA) - MRI CCM simulation REF-B1 run for present climate, 1960-2006 ## Part 2 NH winter ### Existing studies leave a question about changes in MSSW frequency with ENSO #### **Background: NH winter** - Seasonal-mean states Nonlinear changes with QBO and ENSO (Garfinkel and Hartmann 2007; Wei et al. 2007) - Variability, or frequency of MSSWsA question exists for MSSW frequency changes with ENSO - ♦ Obs. (Butler and Polvani 2011) MSSW freq. increases for LA and EL than for NT - ♦ Model (Taguchi and Hartmann 2006) MSSW freq. increases for EL than for LA - ⇒How can we understand MSSW changes with ENSO? ### We classify 56 years ('57/'58-'12/'13) into 6 groups defined by 3 ENSO and 2 QBO conditions #### Scatter plot of ENSO and QBO indices for DJF ### Our results reproduce known nonlinear changes in seasonal (DJF) mean states DJF composite [U] diffs. (m/s) from climatology ### MSSW frequency/probability shows nonlinear changes with ENSO and QBO #### MSSW probability for 6 groups ## Seasonal mean [U] and MSSW probability show consistent changes for DJF Bar charts for seasonal mean [U] (m/s) and MSSW probability (%) for DJF ### The high MSSW probability for LA/ELY winters is consistent w/ strengthened stationary wave 1 #### DJF stationary waves at 60N, 300hPa LA/ELY winters show ♦ decreased ridge near clim. trough increased ridge near clim. ridge Two groups show different stationary wave responses: ♦ different mean wind (basic state) ♦ similar heating (precip.) anomalies 360 300 ## The MRI CCM does not simulate obs. changes in seasonal mean state or MSSW probability DJF MSSW probability (%) #### MRI CCM REF-B1 for NH winter DJF mean [U] (m/s) # Part 2 SH spring #### Existing studies examined SH changes with each or both of QBO and ENSO #### **Background: SH spring** - Changes with each factor (QBO or ENSO) - ♦SH stratosphere is sensitive to QBO at higher levels, e.g., 25 hPa (Baldwin and Dunkerton 1998; Naito 2002) - ♦ La Nina- or CP El Nino-like SSTs lead to enhanced PW activity (Lin et al. 2012) - Nonlinear changes with both factors (Hurwitz et al. 2011) - ♦ PW activity response to CP El Nino is stronger during QBO ELY - ♦SH stratosphere may be insensitive to conventional El Nino Does the SH also change nonlinearly with NINO3 and QBO? ## Composite analysis shows significant changes in wave 1 amplitude SON stationary wave 1 amp. diff. (m) from clim. ### Composite analysis suggests interesting changes in stationary wave structure Ref.: ENSO is 25% of NINO3, QBO is 0 m/s of 20hPa wind. We examined NH and SH changes w/ QBO and ENSO; we will further explore the mechanisms for the changes #### Summary: Extratropical part - NH winter - ♦ Obs. (Taguchi 2014, submitted to JC) MSSW probability changes nonlinearly as in seasonal mean states **♦** MRI CCM simulation It may be still difficult to model these changes - ■SH spring - $\Diamond$ Obs. SH spring is also likely to experience nonlinear changes e.g., stationary wave pattern changes with NINO3 #### Summary ### This talk has discussed (1) QBO variations, and (2) NH/SH changes with QBO and ENSO #### **Summary** - We have detected (and diagnosed) various signals: - Nonlinear changes in both NH/SH with QBO and ENSO NH winter: MSSW probability - SH spring: stationary wave pattern - We will seek to strengthen and expand the analyses the analyses lead to further issues as mentined in places #### Back-ups ### The mechanism of QBO is the interaction of mean zonal flow with various equatorial waves #### Schematic of QBO-related processes Ref.: Baldwin et al. (2001) #### We extract QBO signals/anomalies as follows #### **Method** - Extract QBO signals/anomalies (denoted as A') remove climatological seasonal cycle apply 5-month running mean - Perform EOF analysis apply EOF to U' in 10-70 hPa (or other regions) obtain EOF1,2 and PC1,2 obtain amplitude, phase progression rate, etc. - \*Focusing on zero wind lines will be sensitive to data and analysis procedures ## The basic, momentum budget of QBO is among tendency, vertical advection, and wave driving #### TEM $$T = M + V + D + X$$ ■ Basic budget of QBO component ``` T' ≈ V' + WD' (WD: wave driving of various scales) i.e., ``` $[U]_{t}'\approx (-[U]_{\tau}[W]res)' + WD'$ #### The basic, momentum budget of QBO is: $[U]_t \approx - [U]_z [W] res + WD$ For ELY shear zones, the momentum budget is: Vertical advection of QBO component is roughly: where ABG represents LTM (time-constant) background For ELY shear zones, the vertical advection is: #### The EOF analysis can well capture the phase propagation of the QBO. #### **EOF** results EOF1,2 structures, and PC1,2 distribution U anomaly (m/s) U anomaly (m/s) Ref.: Wallace et al. (1993) ### We get amplitude and phase progression rate using the trajectory of PC1,2 #### Definition of $|\psi|$ and $\psi'$ Schematic for amplitude and phase progression rate Amplitude: |ψ| distance from origin (non-dimensional) Phase progression rate: ψ' time change in argument (deg./mo.) Each data point accompanies info of month (season) and quadrant. Ref.: This definition of amplitude here is different from that of Kawatani. ## Phase progression rate shows larger variability (i.e., VAR/MN ratio) than amplitude #### The time series of phase progression rate sometimes have small values. Time series of phase progression rate Ref.: Cyan for DJF Magenta for JJA Circles for W group (WLY peak near 50 hPa) ### We contrast two groups of 3 cases: stalling cases vs. smooth propagation cases ## Stalling cases show stronger QBO signal (in upwelling) around 10hPa Ref.: Time means are taken for lag= -5 to -1 months ## 2D sorting reproduces the annual synchronization feature #### Modulation by season Number of samples for each of 16 groups Ref.: Taguchi (2010, JGR) ### 2D sorting shows variations in |ψ| and ψ' with season and phase #### Modulation by season Amplitude, and phase progression rate Ref.: Taguchi (2010) ### Such features are generally robust regardless of season and QBO phase #### **Modulation by ENSO** #### Composite differences, EL minus LA About bottom or top 25% samples are LA/EL. Taguchi (2010) (c) +4 ### The absence of annual synchro. from CCM corresponds to roughly uniform G term (in time) #### **MRI CCM** #### [U] anomalies and tendency in MRI CCM data ### The high MSSW probability for LA/ELY winters is consistent w/ strengthened stationary wave 1 300hPa stationary waves for LA/ELY (highest prob.) vs. LA/WLY (lowest) ### We speculate that the stationary wave responses are affected by zonal wind profiles Precip. (kg/m²/day) and zonal wind (m/s) anomalies for the two groups Ref.: Gray dots are 90% significant differences from climatology. ## Composite analysis suggest nonlinear changes in stationary waves Ref.: ENSO is 25% of NINO3, QBO is 0 m/s of 20hPa wind. CI is 50 m. Mark 60S. #### Secondary Back-ups ## ELY onset cases show larger variability in QBO upwelling at upper levels (≲10 hPa) #### Std. dev. of [W]res' (mm/s) Ref.: Time means are taken for lag= -5 to -1 months ### Kawatani and Hamilton show trend in QBO amp., while it is difficult to find trend in QBO period. #### **Trend** Amplitude (Kawatani and Hamilton 2013) Increase at upper levels Decrease at lower levels Output Decrease at lower levels Decrease at lower levels Output Decrease at lower levels Three-cycle mean amplitude of QBO for each time (month) and level Trend in $A_u$ (% decade<sup>-1</sup>) Other properties, such as period and phase progression rate Difficult to find due to large variability #### QBO index in the MRI CCM run shows a node of PDF around 0 m/s. PDFs of DJF [U] in 5N/S, 50hPa Nbin=10 Nbin=20 ### MRI CCM run shows too strong polar vortex in NH winter stratosphere **MRI** #### DJF climatology of [U] (m/s) ## MRI CCM run (REF-B1) does not reproduce mean wind changes with ENSO and QBO. #### **MRI CCM** DJF [U] diffs (m/s) from climatology Ref.: LA/EL are bottom/top 25 % of observed NINO3.4. QBO threshold is 0 m/s wind at 5N/S, 50hPa. CI is 2 m/s. Gray dots denote statistical significance at 90 % level. ## The tendencies T for the annual synchronization largely balances with X Bar chart for TEM diagnosis in 5N/S, 50hPa when tendency is large from April to June (top/btm 30 %) Suggest role of unresolved, smallscale waves in annual synchronization \*Poster (D) by Dr. Thomas Krismer ♦SAO determines seasonality of QBO ♦Annual cycle of [W]res in LS allows downward propagation when it becomes weak