The Search for Ozone Recovery Using 36 Years of SBUV Satellite Data

Richard S. Stolarski Earth & Planetary Sciences Johns Hopkins University Baltimore, MD, USA

SBUV (Solar Backscatter UltraViolet) Instruments

- Nadir-viewing; use solar UV radiation backscattered from the atmosphere to measure ozone
- New Version 8.6 (replacing version 8)
 - Total ozone is the sum of layer amounts
 - Early instrument calibration to SSBUV; late instrument calibration to NOAA 17
- Merged ozone data set (MOD) SBUV only: no TOMS data

Can we separate ozone change due to ODSs from that due to GHGs?

Example: 60S-60N Total Column Ozone: Fit to EESC + Linear Trend (plus Solar, volcanos, QBO, and ENSO)

Use Nash/Newman EESC (2 examples; Age=3 years and Age=5 years)

Linear trend represents GHGs and is expected to have a positive coefficient

	EESC trend pre- 1993	EESC trend post- 2000	Linear trend
Age = 3 years	- 4.5 ± 1 DU/dec	+ 1.3 ± 0.3 DU/dec	- 1.1 ± 0.5 DU/dec
Age = 5 years	- 4.7 ± 1 DU/dec	+ 1.3 ± 0.3 DU/dec	- 0.2 ± 0.7 DU/dec

The Impact of GHGs on Stratospheric Ozone

SPARC General Assembly Queenstown, NZ 16 January 2014

Results from the GEOS CCM 2065-1980

Li, F., et al. (2009), Stratospheric ozone in the post-CFC era, *Atmos. Chem. Phys., 9(6), 2207–2213.*

> Net result is a column ozone increase at mid to high latitudes and almost no change near the equator

Expected Pattern for GHG Impact on Ozone

SBUV Altitude Profiles

Instrument uses wavelength to scan in altitude

SBUV Lower Stratospheric Measurements

Kramarova, N. et al. Atmos. Meas. Tech. 6, 2089-2099, 2013

Years

Conclusion: SBUV measurements, integrated over a broad vertical layer, provide an excellent data record for the lower stratosphere

Upper Stratosphere (16-1 hPa)

Lower Stratosphere (1000-16 hPa)

Summary

 Upper stratospheric cooling shows positive ozone response as expected

 \odot Lower stratospheric ozone does not show evidence of circulation speed-up

Conclusions

- SBUV has continuous record of 35+ years
- Integrated lower stratosphere is excellent measurement
- Detect upward trend in upper stratosphere in addition to EESC fit: consistent with stratospheric cooling
- Do not detect signature of circulation speed-up