Impact of Aviation on Atmospheric Composition and Climate

Wissen für Morgen

Robert Sausen

Deutsches Zentrum für Luft- und Raumfahrt Institut für Physik der Atmosphäre Oberpfaffenhofen, Germany

SPARC 2014 Queenstown, New Zealand, 12 - 17 January 2014

Why are aviation climate impacts of particular importance?

- → Rather strong growth rates.
- \rightarrow Non-CO₂ effects are stronger than in most other industrial sectors.

12.01.2014

Global aviation fuel burn and revenue passenger kilometres

Lee et al., 2009

CO₂ equivalent emissions of EU-15 Change since 1990

EU-15 emissions of CO2 equivalent and 2020 target

data: http://unfccc.int/

Sausen @ SPARC 2014

5

linear trend (10 a) of transport emissions after 2011

Aviation bunkers CO₂ equivalent emission change rel. to 1990

Why are aviation climate impacts of particular importance?

- ✤ Rather strong growth rates.
- \rightarrow Non-CO₂ effects are stronger than in most other industrial sectors.

Atmospheric effects of emissions from aviation

12.01.2014

8

Atmospheric effects of emissions from aviation

Impact of NO_x emissions

process		live time	radiative forcing
emissions of NO _x		days	
⇔	increase O ₃ concentration	weeks to months	positive RF
⊳	decreased CH ₄ concentration	decade	negative RF
⇔	decreased O ₃ concentration (primary mode)	decade	negative RF

Efficiency of O₃ production for NO_x emissions from transport

Number of produced O₃ molecules per NO_x molecule emitted

road transport	0.33 ± 0.05
shipping	0.54 ± 0.07
aviation	1.63 ± 0.58

One NO_x molecule from aviation results in an O_3 increase five times as large as by one NO_x molecule from road transport

Hoor et al., 2009

Uncertainties in RF from aviation NO_x

scaled to1 Tg(N)/a

Holmes et al., 2011

12

Atmospheric effects of emissions from aviation

Aircraft induced cloudiness

- → contrails
- → contrail cirrus
- ➔ indirect impact on clouds. e.g., soot cirrus

Contrails

- → can by triggered at sufficiently low temperature (Schmitt-Appleman criterion)
- → grow in a sufficiently humid background atmosphere
- → a single contrail can warm or cool (warimng on average)

Sausen

Contrails from old and modern aircraft

altitude 10.5 km (FL 344)

16

Schumann et al., 2000

Contrails may develop into contrail cirrus (in suitable conditions)

12.01.2014

Radiative forcing by contrail cirrus (linear contrails and longer-lived contrail cirrus)

Aerosol load from aviation

Righi et el., 2013

Aerosol-induced RF from aviation

Righi et el., 2013 Righi et al., 2014

12.01.2014

20

Radiative forcing from aviation 2005

 $\Delta T_{\rm surf} = \lambda \cdot RF$

Total anthropogenic forcing 1.6 W/m²

Aviation fraction: CO_2 1.6 % Total 4.9 %

Lee et al., 2009

Aviation contribution to anthropogenic radiative forcing

Radiative forcing from aviation 2005

contrail cirrus

- ★ Chen & Gettelman, 2013
- ★ Burkhardt & Kärcher, 2011
- 🖈 Schumann & Graf, 2013

indirect clouds

- reference case
- parameter span

Righi et al., 2013

Indirect cirrus effects not considered here.

Conclusions

- → Emissions from aviation increase particularly fast, faster than the sum of all anthropogenic impacts.
- \rightarrow RF from aviation-induced CO₂ contributes 1.6% to the total anthropogenic RF.
- \rightarrow RF from non-CO₂ effects are of same order of magnitude than RF from CO₂.
- \rightarrow NO_x effects, contrails and contrail cirrus cause warming.
- → Aerosols and indirect cloud effects cause cooling.
- → RF from aviation cloud effects is only estimated with very large uncertainty.
- → RF from aviation NO_x effects needs to be studied further in order to reduce the uncertainty.
- → RF from all aviation effects contributes about 5% to the total anthropogenic RF.

Final remarks

The climate impact of the aviation-induced non- CO_2 effects depends on the actual weather situation, and on the time, geographical location and altitude of the emissions.

- The climate impact from aviation non-CO₂ emissions can be substantially reduced by eco-efficient flight trajectories, at the expense of higher operational costs if using today's aircraft.
 - ⇒ However, operational costs can be reduced with aircraft adapted for ecoefficient flight trajectories.

