Chemical/Dynamical Interactions and Consequences for Climate

<u>Thomas Reichler</u>¹, Junsu Kim¹, Larry Horowitz², Elisa Manzini³, and Hauke Schmidt³ ¹U. of Utah / DLR, ²NOOA-GFDL, ³MPI-Hamburg

Antarctic Minimum Total Ozone

Variability of Antarctic Ozone

Feedback

Basic Strategy

- Hypothesized positive feedbacks should
 - o increase persistence on intraseasonal time scales, and
 - increase variability on interannual time scales.
- Feedback response = results from (models with feedbacks) minus (models in which feedbacks are turned off)

CCMVal-2

- Coupled chemistry-atmosphere models; multi-model means of 5 common models
- Transient simulations: 1960-2100

name	forcings	factors
B2	varying GHGs and ODSs	$DC + PC + \uparrow CO_2$
B2b	1960 ODSs	$DC + \uparrow CO_2$
B2c	1960 GHGs	DC + PC

SAM (Z50) CCMVal-2 model

SAM (Z50) Interannual Variability

Ozone depletion vs. ozone recovery period

GFDL-CM3

- Coupled chemistry-climate model
- Long time-slice simulations (500-2000 years)

name	forcings	factors
CTRL	1860	DC
DEPLO3	1990 CO ₂ and ODSs	$DC + PC + \uparrow CO_2$
FIXO3	1860, fixed ozone	-

- Caveats
 - DEPLO3 has no Arctic ozone depletion
 - DEPLO3 has changing CO₂
 - FIXO3 has more SSWs (46%) than CTRL (36%) or DEPLO3 (35%)

SH: Persistence

- TOZ and SAM anomalies last for several months
- On average, TOZ has longer time scale than SAM
- PC strongly increases TOZ persistence
- **DC** influence is noticeable

Cross-Correlation: TOZ & SAM10

- Correlations between TOZ and SAM are strongly positive, in particular during austral spring
- Correlations are larger when SAM leads TOZ
- Correlations are larger in DEPLO3 than in CTRL (not shown)

Cross-Correlation: TOZ & SAM10

- Correlations between TOZ and SAM are strongly positive, in particular during austral spring
- Correlations are larger when SAM leads TOZ
- Correlations are larger in DEPLO3 than in CTRL (not shown)
- Correlations are larger than auto-correlation of SAM in FIXO3 (= no-feedback null-hypothesis)

Polar Vortex: U10 @ 60°S

First 100 years each

Polar Vortex: U10 @ 60°S

SAM Interannual Variability

GFDL-CM3

SAM Interannual Variability

SAM Interannual Variability Change

CCMVal-2 vs. GFDL-CM3

(percentage change)

NAM Interannual Variability Change

CCMVal-2 vs. GFDL-CM3

(percentage change)

Conclusion

- Our results are consistent with the hypothesized feedbacks
 - feedbacks increase Antarctic climate variability
 - up to 80% in stratosphere
 - 5% in troposphere
 - photo-chemical feedback (PC) strongly amplifies dynamical-chemical feedback (DC)
- Anthropogenic ozone depletion increases climate variability
 - impact on sea ice variability and detectability of trends
- Models without interactive chemistry underestimate natural climate variability