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Near-term climate forcers: B8 Reading
NTCFs

IPCC AR5 chapter 8:

Common property is the timescale over which their
impact on climate is felt.
o Primarily within the first decade after emission.

Short lifetimes in the atmosphere, sometimes referred to
as “short-lived climate pollutants”.

Includes methane (also a WMGHG), as well as ozone and
aerosols, (or precursors) and some halogenated species.

Do not accumulate in the atmosphere at decadal to
centennial timescales.



Time and spatial scales B Reading

o CO,
— Remains in the atmosphere for
centuries
~ Evenly spread across the globe

o Methane

— Remains in the atmosphere for
around 12 years

- Relatively evenly spread

o« Ozone and Aerosols
— Remain in the atmosphere for a
few weeks

- Concentrated over source | - - Sulphate’
regions |
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Ozone RFin AR5 B8 Reading
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How quickly does the surface
temperature respond to a change in
concentration?

— Onlyabout 10 years to get 2/3 of the
full response

~ Slow rate of climate change is due to
slow growth of CO,
Can get quick climate response by
cutting back on soot or methane
— Butonly short-term relief
— Cutting sulphur warms climate!

Cutting CO, is the only solution for
long-term climate change
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Climate metrics B8 Reading
e Metrics quantify a climate impact for a 1kg pulse emission

GWP:
o AFintegrated out to time horizon H divided by the same for CO,

— AGWP(H)=[" AF(t)dt inWm-2yr kg or | kg

GTP;

o Changein T, at time H divided by the same for CO,
- Depends on timescale of climate response: R(t) (K(Wm~2yr)'or K] 1)
~ AGTP(H)=[," AF()R(H — t)dt in K kg’
» Parameterise climate response (sum of two exponentials 8.4 yr, 410 yr)

o GTPs give a measure of the temperature-change impact of an emission

o (Can apply them to any emission scenarios to estimate net temperature
effect



I 1rmWmeyr pulse
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Global precipitation B Reading

« (Can estimate precipitation change by atmospheric energy
balance

o LAP+ASH=AQatm; Allan et al. Surv. Geophys. 2013
® LAPNkAT AFatm' 008 | Change in precipitation
- k=2 Wm-2K-1,
~ 1=2.5x106 |kg’
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Gothenburg Protocol + EU CO, targe gy

Reading

Temperature perturbation: Baseline
relative to constant 2005 emissions
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Potential for mitigation "B

Integrated Assessment
of Black Carbon
and Tropospheric Ozone

o Control measures to cut

CO, also cut sulphur
- Coal, oil — gas,

renewables 4.0 I I I I I I I I I I I I I I I
— Sulphur acts quickly; 35 |- -
CO, slowly

30 = CO; measures

o CO, measures alone
don’t keep us below 2°
~ Co-emitted SO,

2.5 =

20 —

CHa + BC measures -

o =>need measures to
reduce CH, and soot
- 0.4° cooling
~ Stays below 2 °

CO7 + CH4 + BC
Imeasures

Temperature ('C) relative to 1890-1910
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Comparison of UNEP & IPCC @ﬁlﬁz’i‘ﬁ%
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Regional emissions B Reading

o Emissions of near-term climate forcers from different
regions can have different climate metrics

« Use multi-model study of aerosol and chemistry models
- 4 continents E. Asia, Europe, N. America, S. Asia
- Changing emissions 1 continent at a time

TOA RF (x1000) TOA RF (xlOOO) TOA RF (x1000) TOA RF (x1000)
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« Ozone precursors: climate impact can differ depending on
emission region

« Aerosols: less dependence on emission region
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o Above analysis just looked at
global mean temperature
response

« Shindell and Faluvegi 2009
calculated latitudinal
temperature responses to

latitudinal forcing changes
~ (slab ocean model)

o Diagonal elements generally
strongest

— Strongest temperature change
in same latitude band as
forcing
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Black Carbon example B Rescing

Global — Regional
GTPs — RTPs

N. mid latitude emissions:

— Temperature Response is
larger over the latitude of
the emission

- ~twice the global response

— Response is very small in
S. hemisphere
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Applications B Reading

« Can use regional climate metrics (ARTPs) to identify
regional climate impacts of any emission profile

— Aerosols, ozone and methane
o Local impacts

— Do regional controls

benefit that region? Control measures
e Sensitive areas PR & © o &
. < O <
~ Impacts on Arctic 5§ & & & & & &
15
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-15
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-25
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How much further can we take — By

this?

o Continental-scale AT?

~ Patterns become more
complex

e Precipitation

e Asian monsoon (Bollasina et al.

2011)

e May not be simple relationship

between regional climate (AT,
ppn) and regional forcing
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Summary B2 Reading

Near-term climate forcers can have significant climate
effects over the next few decades
— Opportunities for near-term mitigation

« Acton avariety of timescales

- (Can capture these through climate metrics (GTP)
~ Large uncertainty in the timescales of the climate response

« Forcing is non-uniform, so is temperature response

~ Regional impacts (e.g. Arctic) can be significantly larger than
global average

« Breaking the response down further is challenging



