

Near-term climate forcing

Bill Collins

© Crown copyright Met Office

© University of Reading 2008

www.reading.ac.uk

Outline

Motivation

- Near-term climate forcers Timescales
 - Calculating climate effects (metrics)
 - RF, GWP, GTP
- Policy uses
- Spatial scales
- Regional impacts
- Summary

Near-term climate forcers: NTCFs

IPCC AR5 chapter 8:

- Common property is the timescale over which their impact on climate is felt.
 - Primarily within the first decade after emission.
- Short lifetimes in the atmosphere, sometimes referred to as "short-lived climate pollutants".
- Includes methane (also a WMGHG), as well as ozone and aerosols, (or precursors) and some halogenated species.
- Do not accumulate in the atmosphere at decadal to centennial timescales .

Time and spatial scales

• CO₂

- Remains in the atmosphere for centuries
- Evenly spread across the globe
- Methane
 - Remains in the atmosphere for around 12 years
 - Relatively evenly spread
- Ozone and Aerosols
 - Remain in the atmosphere for a few weeks
 - Concentrated over source regions

IPCC AR5

- Emission-based approach emphasises role of CH₄
 - CH₄: 0.97 Wm⁻² , CO₂: 1.68 Wm²
- Halocarbon RF offset by strat O₃ depletion

Ozone RF in AR5

TIMESCALES

7

- How quickly does the surface temperature respond to a change in concentration?
 - Only about 10 years to get 2/3 of the full response
 - Slow rate of climate change is due to slow growth of CO₂
- Can get quick climate response by cutting back on soot or methane
 - But only short-term relief
 - Cutting sulphur warms climate!
- Cutting CO₂ is the only solution for long-term climate change

Climate metrics

- Metrics quantify a climate impact for a 1kg pulse emission GWP:
- ΔF integrated out to time horizon H divided by the same for CO_2
 - AGWP(H)= $\int_0^H \Delta F(t) dt$ in Wm⁻² yr kg⁻¹ or J kg⁻¹

GTP:

- Change in T_{surf} at time H divided by the same for CO₂
 - Depends on timescale of climate response: R(t) (K(Wm⁻² yr)⁻¹ or K J⁻¹)
 - AGTP(H)= $\int_0^H \Delta F(t) R(H-t) dt$ in K kg⁻¹
 - Parameterise climate response (sum of two exponentials 8.4 yr, 410 yr)
- GTPs give a measure of the temperature-change impact of an emission
- Can apply them to any emission scenarios to estimate net temperature effect

Timescales

- 1mWm⁻²yr pulses (1.6×10¹⁹J)
 - Different lengths, but equal areas
 - v.short-lived (O₃, aerosol)
 - 12-year lifetime (methane)
 - 1.2, 18.5, 173 years (CO₂)
- GTP is a stronger function of time than GWP
- 2 tracers have very different GTP₂₀, but similar GTP₁₀₀

Global precipitation

- Can estimate precipitation change by atmospheric energy balance
- $L\Delta P + \Delta SH = \Delta Qatm$; Allan et al. Surv. Geophys. 2013
- $L\Delta P \sim k\Delta T \Delta F_{atm}$;
 - k=2 Wm⁻²K⁻¹,
 - L=2.5×10⁶ Jkg⁻¹

POLICY SCENARIOS

Gothenburg Protocol + EU CO₂ targe Reading

Temperature perturbation: Baseline relative to constant 2005 emissions 0.03 0.02 SO2 0.01 0 NH3 -0.01 VOC -0.02 BC 0C -0.03 CO -0.04

ECLIPSE

Comparison of UNEP & IPCC

- Before 2050 IPCC scenarios don't show a consistent pattern of warming from "cleanest" to "dirtiest"
 - Different assumptions on chemistry and aerosols
- UNEP scenario lies below the IPCC range
- →Over confidence in short-term predictions from IPCC scenarios
- →Future climate for next 30 years isn't fixed

SPATIAL SCALES

Regional emissions

- Emissions of near-term climate forcers from different regions can have different climate metrics
- Use multi-model study of aerosol and chemistry models
 - 4 continents E. Asia, Europe, N. America, S. Asia
 - Changing emissions 1 continent at a time

- Ozone precursors: climate impact can differ depending on emission region
- Aerosols: less dependence on emission region

- Above analysis just looked at global mean temperature response
- Shindell and Faluvegi 2009 calculated latitudinal temperature responses to latitudinal forcing changes
 – (slab ocean model)
- Diagonal elements generally strongest
 - Strongest temperature change in same latitude band as forcing

Black Carbon example

- Global \rightarrow Regional
- GTPs \rightarrow RTPs
- N. mid latitude emissions:
 - Temperature Response is larger over the latitude of the emission
 - ~twice the global response
 - Response is very small in S. hemisphere

Emission region

BC

Applications

- Can use regional climate metrics (ARTPs) to identify regional climate impacts of any emission profile
 - Aerosols, ozone and methane
- Local impacts
 - Do regional controls benefit that region?
- Sensitive areas
 - Impacts on Arctic
- Example:
 - UNEP Assessment control measures
 - Temperature change at 2050

Control measures

How much further can we take this?

- Continental-scale ∆T?
 - Patterns become more complex
- Precipitation
 - Asian monsoon (Bollasina et al. 2011)
- May not be simple relationship between regional climate (ΔT, ppn) and regional forcing

Summary

- Near-term climate forcers can have significant climate effects over the next few decades
 - Opportunities for near-term mitigation
- Act on a variety of timescales
 - Can capture these through climate metrics (GTP)
 - Large uncertainty in the timescales of the climate response
- Forcing is non-uniform, so is temperature response
 - Regional impacts (e.g. Arctic) can be significantly larger than global average
- Breaking the response down further is challenging