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Chapter 5: Implications of results 

5.1 Implications for model-measurement intercomparison 

Satellite trace gas datasets are crucial for the evaluation of 
transport and chemistry in numerical models. Datasets 
available from di�erent satellite instruments vary in terms 
of measurement method, geographical coverage, spatial 
and temporal sampling and resolution, time period, and 
retrieval algorithm and thus have di�erent strengths and 
shortcomings. Comparing numerical model output to 
di�erent chemical datasets can lead to con�icting results 
depending on the particular application. Issues arising 
from the use of di�erent observational datasets for model 
evaluations have been identi�ed in the CCMVal report 
[SPARC, 2010]. It became clear that the characteristics 
of the satellite datasets, including quality, resolution, and 
representativeness, need to be known prior to their use 
and prior to the interpretation of model evaluation results. 
�e CCMVal report’s recommendations that ”A systematic 
comparison of existing observations is required in order 
to underpin future model evaluation e�orts, by providing 
more accurate assessments of measurement uncertainty’’ 
directly motivated the work for the SPARC Data Initiative 
presented in this report. While Chapter 4 provides basic 
information on quality and consistency of the various data 
products, the following Chapter 5 focuses on summarizing 
some implications of the results for model-measurement 
inter-comparisons. Examples of how knowledge of 
uncertainty and inter-instrument di�erences can be used to 
improve comparisons are given and particular diagnostics 
appropriate for model evaluations are recommended. 

For the CCMVal report, the observational mean values 
and uncertainty range served as input for the performance 
metrics. Such metrics are used to quantify the ability of 
models to reproduce key stratospheric processes. One 
widely applied metric:

                                                                     = 1 −  1  | −  |   
 (5.1)

uses a scaling factor 𝑛𝑔 as well as the observational 
uncertainty 𝜎𝑜𝑏𝑠 and climatological mean 𝜇𝑜𝑏𝑠 for the 
evaluation of the model climatological mean 𝜇𝑚𝑜𝑑 
[Douglass et al., 1999; Waugh and Eyring, 2008; SPARC, 
2010]. In the past, the observational uncertainty has most 
o�en been derived using the interannual variability of a 
single instrument only. 

Our approach is to provide an alternative, more com-
prehensive uncertainty range derived from all available 

datasets, instead of recommending one particular satellite 
dataset for the model-measurement comparison. �e selec-
tion of the data points suitable for the construction of the 
new climatological mean values and uncertainty range is 
based on their agreement with the mean state of the atmo-
sphere as given by all instruments and on the speci�c satel-
lite characteristics such as sampling patterns. �e following 
general guidelines are applied for the selection process.

• �e agreement of each individual dataset with the mean 
state of the atmosphere is determined based on the 1𝜎 
standard deviation over all instruments. For trace gases 
observed by more than �ve instruments, individual data 
points will be removed if they are outside of the ±1𝜎 
standard deviation range. For trace gases observed by 
�ve or less instruments, the data points will be removed 
if they are outside of the ±2𝜎 standard deviation. 

• Further speci�c criteria used to calculate the mean state 
and uncertainty range are chosen based on the instru-
ment/retrieval performance identi�ed in the di�erent 
chapters of this report, and will change depending on 
the diagnostic and the trace gas. Detailed information 
on the evaluations is provided in the following para-
graphs, structured according to evaluation diagnostic. 

• For each diagnostic and even within one diagnostic, the 
datasets selected for the construction of the uncertainty 
range can be di�erent depending on latitude, altitude, or 
time period considered. One example of this approach 
can be given for the evaluation of the ozone seasonal 
cycle: if one instrument presents a clear outlier for e.g., 
March, then only the March value of this instrument 
is removed while the values for all other months stay 
included in the uncertainty range. 

• �e climatological mean 𝜇𝑜𝑏𝑠 is de�ned as the multi-
annual, multi-instrument mean value of all data 
points selected as suitable for the construction of the 
uncertainty range. Note that the climatological mean is 
di�erent from the MIM used in the previous chapters 
which was based on all available datasets.

• �e uncertainty range 𝜎𝑜𝑏𝑠 is de�ned as the spread over 
all selected datasets and years. In general, the interannual 
spread needs to be accounted for when producing 
the uncertainty range, so that the free-running 
models can be compared against the observational 
mean state. Note however, that for model simulations 
nudged to meteorological reanalysis, the comparisons 
focus on the same years and the uncertainty range 
can be solely based on the spread over all selected 
datasets and not include interannual variations.  
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In summary, we derive an observational mean state and 
uncertainty range from multiple datasets from the SPARC 
Data Initiative for selected examples of evaluation diag-
nostics. For all evaluations listed in the following Section 
5.1, the uncertainty range and climatological mean will be 
made publicly available through the SPARC Data Center. 

5.1.1 Seasonal cycles 

�e seasonal cycle of long-lived atmospheric trace gases 
such as water vapor and ozone is o�en used as a diagnostic 
of transport processes in the stratosphere and in particular 
in the UTLS. 

Ozone – O3

�e ozone seasonal cycle in the UTLS in mid-latitudes is 
determined by the seasonality of two processes: air mass 
transport with the Brewer-Dobson circulation and mixing 
with tropical air masses. In order to evaluate the model’s 
representation of these large-scale transport and mixing 
processes, a comparison of the ozone seasonal cycle for 
the latitude bands 40°S/N-60°S/N at 100 and 200 hPa 

has been used [SPARC, 2010; Hegglin et al., 2010]. While 
the calculation of the quantitative performance metric 
in the CCMVal report was based on MIPAS data alone, 
we will provide a new climatological mean state and 
uncertainty range derived from multiple datasets. �e 
method (illustrated in Figure 5.1.1) is explained below for 
40°N-60°N, 200 hPa. 

Step 1: �e ozone seasonal cycles for satellite datasets are 
derived from 2005-2010 multi-annual mean values. �e 
time period has been chosen based on a maximum number 
of active satellite limb instruments. �e uncertainty range 
(grey shading in Figure 5.1.1) is calculated as the ±1𝜎 stan-
dard deviation over all instruments’ multi-annual mean 
values. 

Step 2: All data points outside of the ±1𝜎 standard deviation 
from step 1 are removed. Additionally, data points from 
instruments with a very large interannual spread need to 
be excluded. �erefore, all multi-annual mean values with 
an interannual variability (vertical bars in the uppermost 
le� panel of Figure 5.1.1) larger than the ±2𝜎 standard 
deviations from step 1 are removed. �e new mean values 
and uncertainty range are calculated.
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Figure 5.1.1:  Ozone seasonal cycle diagnostic for 40°N-60°N at 200 hPa. The individual steps of deriving the ozone 
seasonal cycle diagnostic are shown. The uncertainty range (grey shading) is given for each month by the standard deviation 
over all multi-annual means of the selected  datasets. In the uppermost left panel the vertical bars indicate the interannual 
spread of each instrument calculated as the standard deviations over all years. For the selection of the  datasets, outliers and 
data points strongly impacted by sampling are removed as illustrated in steps 1 to 3 and explained in detail in the text. In 
step 4 the uncertainty due to interannual variations is added to the uncertainty range. In the lower rightmost panel the old 
uncertainty range given in the CCMVal report and the new uncertainty range are compared.

O3, 40°N-60°N, 200 hPa 
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Figure 5.1.2: Ozone seasonal cycle diagnostic for 40°N-60°N at 100 hPa. Steps 1 and 4 of deriving the ozone seasonal 
cycle diagnostic are shown. The uncertainty range (grey shading) is given for each month by the standard deviation over 
all selected  datasets. In the rightmost panels the old uncertainty range given in the CCMVal report and the new uncertainty 
range are compared.
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Figure 5.1.3: Ozone seasonal cycle diagnostic for 40°S-60°S at 200 and 100 hPa. Same as Figure 5.1.2 but for 200 and 
100 hPa at 40°S-60°S.

Step 3: All data points impacted by a sampling bias estimated 
to be larger than 10% are removed. Such sampling bias can 
arise when averaging binned atmospheric measurements due 
to non-uniform sampling in time or space. �ese sampling 
biases have been identi�ed by applying the sampling patterns 
of the satellite instruments to O3 �elds from coupled 
chemistry climate models (see Chapter 3; Toohey et al. 
[2013]). In the tropics, comparisons to ozonesondes are used 
to remove data points that show large deviations. �e new 
mean values and uncertainty range are calculated.

Step 4: �e uncertainty range is recalculated as the ±1σ 
standard deviation over all remaining instruments and 
years, now taking not only the inter-instrument but also 
the inter-annual spread into account. Including the latter 
in this �nal step increases the uncertainty range for most 
cases, but is nevertheless important in order to produce 
an uncertainty that free-running models can be compared 
against. 

O3, 40°S-60°S, 200 hPa

O3, 40°S-60°S, 100 hPa

O3, 40°N-60°N, 100 hPa
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To summarise, the �nal ozone seasonal cycle for the 
2005-2010 period is calculated from the instruments’ 
multi-annual mean values remaining a�er the removal of 
outliers and data points impacted by sampling bias (steps 
1-3). �e uncertainty range is calculated accordingly as 
the ±1σ standard deviation over all those instruments 
and over all years. �e new uncertainty range is generally 
smaller than the old uncertainty range used in the 
CCMVal report (lower right panel in Figure 5.1.1). For 
some months, the uncertainty has been reduced by more 
than 50%. �is reduced uncertainty range applied to the 
quantitative performance metric (Eq. 5.1) will provide 
a powerful constraint on the model results and thus the 
model representations of the ozone seasonal cycle can be 
di�erentiated more clearly than before. Additionally, the 
climatological mean is now shi�ed to lower values. �e new 
lower mean values agree better with the CCMVal models 
whose multi-model mean values were found to be too low 
compared to the old climatological mean values (see Figure 
7.22 in the CCMVal report; also Figure 11 in Hegglin et al. 
[2010]). �e improved agreement suggests that most of the 
CCMVal models perform better than previously thought 
with regard to the ozone seasonal cycle in the UTLS.

For the presentation of the improved seasonal cycle 
diagnostic for other regions and trace gases, only step 
1 and 4 and for some regions also step 2 as well as the 
comparison with the old CCMVal uncertainty range will be 
displayed. Figures containing each step of the derivation of 
the new uncertainty range are provided in Appendix A5. At 
100  hPa in the Northern Hemisphere (NH) mid-latitudes 
(40°N-60°N), the ozone seasonal cycle is derived from the 
2005-2010 multi-annual mean of 9 satellite instruments 
(Figure 5.1.2). Reducing the satellite datasets according to 
their agreement with the multi-instrument mean value and 
their sampling biases results in a much reduced uncertainty 
range in particular during NH winter and spring. For these 
months, most of the new uncertainty is caused by inter-
annual variations and not by inter-instrument variations as 
becomes clear from the multi-annual mean values clustering 
in the center of the new uncertainty range. Similar to our 
results for 200 hPa, the new uncertainty range is much 
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Figure 5.1.4: Ozone seasonal cycle diagnostic for 20°S-20°N at 100 hPa. Steps 1, 2 and 4 of deriving the ozone seasonal 
cycle diagnostic are shown. The uncertainty range (grey shading) is given for each month by the standard deviation over all 
selected data points.

reduced when compared to the one used in the CCMVal 
report, and hence will be much better suited to identify badly 
performing models. For the NH summer and autumn, the 
reduction is about 2/3 of the old range. �e climatological 
mean value, however, did not change systematically.

�e evaluation of the Southern Hemisphere (SH) mid-
latitude ozone seasonal cycle (Figure 5.1.3) follows the same 
steps as described above for the NH based on 2005-2010 
multi-annual mean datasets from 9 satellite instruments. 
At 200 hPa, the new uncertainty range is very similar to 
the old one based on MIPAS observations only. Except 
for January, this uncertainty results mostly from the inter-
instrument spread (and not from the inter-annual spread) 
with one instrument having particularly lower values than 
all other datasets. Despite this instrument seeming to be an 
outlier for some months, it agrees very well with SAGE II 
and HALOE ozone for the overlap time period 2003 (not 
included here) con�rming this as the lower end of our 
uncertainty range. At 100 hPa, the new uncertainty range is 
reduced over the whole year compared to the old one based 
on MIPAS observations, with strongest improvement for 
SH summer, autumn and winter. �e climatological mean 
values increase slightly for August-October, but do not 
change systematically for the rest of the year.

Tropical ozone exhibits a large annual cycle near and 
above the tropopause which is related to seasonal changes 
in vertical transport acting on the strong vertical ozone 
gradient in this region [Randel et al., 2007] and in quasi-
horizontal mixing [Ploeger et al., 2012]. Although the 
annual cycle extends over only a narrow vertical range 
from approximately 100 to 50 hPa, it is an important 
characteristic of tropical ozone in the LS and has been used 
to analyse transport and mixing processes. �e SPARC 
CCMVal evaluation of the seasonal cycle in tropical ozone 
is based on a comparison to the observational NIWA 
dataset [Hassler et al., 2008] at 100 hPa for 20°S-20°N. A 
new uncertainty range based on the SPARC Data Initiative 
datasets is presented in Figure 5.1.4. A�er the removal 
of the outliers the uncertainty range (middle panel of 
Figure 5.1.4) is still relatively large and comparable to the 

O3, 20°S-20°N, 100 hPa
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NIWA-based uncertainty range (black lines in right panel 
of Figure 5.1.4). Evaluations of UTLS ozone a�er the 
application of the TES observational operator [Section 4.27; 
Neu et al., 2014a] including a comparison to a “zonal mean’’ 
ozonesonde climatology indicate that in the tropics below 
100 hPa most instruments have a positive bias. Removing 
all datasets that are outside of the ±1σ standard deviation 
of the climatological ozonesonde measurements (see 
Figure 4.27.6 for details) results in a lower mean and also 
a reduced uncertainty range (right panel of Figure 5.1.4). 
Note that for November, the criteria has not been applied 
in order to avoid inconsistencies with the October and 
December uncertainty ranges. In particular for the time 
period from March to October the uncertainty range has 
been substantially reduced and is now smaller than the 
NIWA-based one.

Most studies analyzing the seasonal cycle of long-lived 
trace gases treat the tropics as a horizontally homogeneous 
region without di�erentiating between NH and SH. Very 
recently di�erences between the ozone seasonal cycles in 
the NH and SH tropics, related to hemispheric di�erences 
in the seasonal strength of vertical transport and horizon-
tal mixing, have been pointed out by Stolarski et al. [2014]. 
Here, we follow their approach and derive uncertainty 
ranges for the ozone seasonal cycle at 80 hPa for the NH 
tropics (0°-20°N) and the SH tropics (20°S-0°) as illustrated 
in Figure 5.1.5. For both regions, the number of overall ap-
plicable datasets decreases substantially when identifying 
outliers and comparing to ozonesondes resulting in a new, 
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Figure 5.1.5: Ozone seasonal cycle diagnostic for 0°-20°N and 20°S-0° at 80 hPa. Same as Figure 5.1.4 but for 80 hPa at 
0°-20°N and 20°S-0°.

narrow uncertainty range. Con�rming the results from 
Stolarski et al. [2014] the seasonal cycle of tropical ozone 
is substantially di�erent in the two hemispheres with a 
less pronounced and later occurring maximum in the SH. 
Model-evaluations of the ozone seasonal cycle should thus 
be based on two diagnostics di�erentiating between the 
NH and SH tropics.

Nitric acid – HNO3

�e HNO3 seasonal cycle in the UTLS is used to evaluate 
transport and mixing processes in the models on typical 
time scales of weeks to months. Like ozone, HNO3 is 
mostly produced in the stratosphere and thus has a similar 
seasonal cycle with some di�erences caused by chemistry 
and microphysics. Figure 5.1.6 shows the evaluation 
diagnostics of the HNO3 seasonal cycle for 40°N-60°N 
at 100 and 200 hPa. �e seasonal cycles of �ve satellite 
instruments are derived from multi-annual mean (2005-
2010) values. At both levels, but in particular at 100 hPa, 
the instruments are clustered together with only little inter-
instrument spread (le� panels in Figure 5.1.6). Compared 
to the ozone seasonal cycle, we have fewer instruments 
available (the ozone evaluations are based on 9 instruments) 
and thus choose a di�erent criterion to identify outliers. 
Only data points outside of the ±2𝜎 standard deviation 
calculated in step 1 will be removed. Note that the grey 
shading in Figure 5.1.6 corresponds to the ±1𝜎 standard 
deviation. At both levels, the agreement between the 
multi-annual mean states of the �ve instruments is very 

O3, 0°-20°N, 80 hPa

O3, 20°S-0°, 80 hPa
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good and thus no data points are identi�ed as outliers and 
excluded from the calculation of the uncertainty range. 
However, some instruments are removed due to their large 
interannual variability (illustrated by the vertical bars in the 
le� panels). At 200 hPa, the uncertainty is more driven by 
the instrument spread than by the interannual variability 
and is smallest during NH summer. Compared to the 
CCMVal report the new climatological mean values during 
NH winter and spring are lower. �e new lower mean 
values agree also better with most of the CCMVal models 
which were found to be too low when compared to the old 
climatological mean (see Figure 7.22 in SPARC, 2010). At 
100 hPa, the new uncertainty range is largest during the 
NH winter as a result of the inter-annual variability of the 
remaining data. Comparisons to the uncertainty used in 
the CCMVal report and in Hegglin et al. [2010] show that 
the new uncertainty range is much reduced.

Similarly to the HNO3 seasonal cycle in the NH UTLS, we 
derive a new uncertainty range and climatological mean 
(see Figure A5.1.4 in Appendix A5) for the HNO3 seasonal 
cycle in the SH UTLS (30°S-60°S, 100 and 200 hPa) as 
applied in the UTLS chapter of the CCMVal report. �e 
strongest reduction of the uncertainty range with respect to 
the one used in the SPARC report is found at 100 hPa in the 
form of an 80% decrease. 
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Figure 5.1.6: HNO3 seasonal cycle diagnostic for 40°N-60°N at 200 and 100 hPa. Steps 1 and 4 of deriving the HNO3 
seasonal cycle diagnostic are shown. The uncertainty range (grey shading) is given for each month by the standard deviation 
over all selected data points. In the rightmost panels the old uncertainty range given in SPARC (2010) and the new uncertainty 
range are compared.

HNO3, 40°N-60°N, 100 hPa

HNO3, 40°N-60°N, 200 hPa

Water vapour – H2O 

�e H2O seasonal cycle in the tropical tropopause region 
(at 80 hPa) is a key diagnostic to evaluate the amount 
of water vapour entering the stratosphere [Gettelman 
et al., 2010]. Water vapour a�ects stratospheric ozone 
through HOx-chemistry as well as the formation of polar 
stratospheric clouds, and also the radiative budget of the 
UTLS [SPARC, 2000]. �e seasonal cycle in water vapour 
is closely related to the seasonal cycle in tropical coldpoint 
tropopause temperature, which in turn is dominated by the 
seasonally varying strength of the stratospheric Brewer-
Dobson circulation. 

Figure 5.1.7 shows the evaluation diagnostics of the H2O 
seasonal cycle for 20°S-20°N at 80 hPa. �e seasonal cycles 
of seven satellite instruments are derived from multi-annual 
means averaged over the time period 1996-2010. Choosing 
a shorter time period for which the instruments would show 
exact overlap does not improve the comparison between 
the instruments (see Chapter 4; Hegglin et al. [2013]), but 
would limit the number of instruments and information 
on interannual variability needed in step 4 to calculate an 
improved uncertainty range. 

�e instruments do not agree well on the mean values 
and hence the uncertainty range is relatively large. 
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Following the approach introduced in this chapter, we 
exclude instruments that lie outside the ±1𝜎 uncertainty 
range given by the seven available satellite datasets. �e 
instruments excluded were already identi�ed in Chapter 
4.2 to have weaknesses, with SMR and HALOE showing 
a distinct low bias and SCIAMACHY showing a high bias 
due to too low resolution in the altitude range considered. 
In addition, we also remove MIPAS, since its averaging 
kernels are state-dependent (measuring with better altitude 
resolution in a more humid atmosphere), which leads to 
a seasonal cycle that exhibits too small an amplitude. �e 
remaining instruments agree very well with each other, 
even though ACE-FTS has very limited sampling in the 
tropics. �us no further data points are removed from the 
calculation and the new uncertainty range is calculated 
including interannual variability. �e new mean seasonal 
cycle and its uncertainty imply that the models have been 
evaluated in the CCMVal report against a too low water 
vapour reference in terms of both mean values and seasonal 
cycle amplitude, while the old uncertainty range may have 
underestimated the impact of interannual variability. 

5.1.2 Vertical and meridional pro�les 

Ozone – O3

Another important aspect of CCM validation is the 
evaluation of polar spring time ozone pro�les. Climato-
logical mean vertical pro�les in March at 75°N-85°N and 
in October at 75°S-85°S are compared between models and 
observations in order to test the models’ representation of 
transport and chemistry in the polar regions. In contrast 
to the strong ozone decline driven by anthropogenically 
emitted ozone depleting substances until the mid-1990s, 
the Antarctic ozone hole has been controlled primarily 
by variations in stratospheric temperature and dynamical 
processes since 1997 [WMO, 2011]. In order to avoid 
the impact of the strong trend before the mid-1990s, we 

H2O, 20°S-20°N, 80 hPa

Figure 5.1.7: H2O seasonal cycle diagnostic for 20°S-20°N at 80 hPa. Steps 1 and 4 of deriving the H2O seasonal cycle 
diagnostic are shown. The uncertainty range (grey shading) is given for each month by the 1𝜎 standard deviation over 
all selected  datasets (left panel). The middle panel shows the sub-selected  datasets, but with the new uncertainty range 
accounting for interannual variability. In the right panel the new uncertainty range is compared to the uncertainty range 
given in the CCMVal report.

choose the time period 1997-2010 for the ozone pro�le 
evaluation in the polar regions. Over this long time period 
eight ozone datasets provide pro�le information for the 
Antarctic spring (Figure 5.1.8, le� panel). Although 
some of the datasets cover only part of the time period, 
most of the pro�les cluster together closely. We �nd one 
clear outlier with large deviations on the positive side, 
which is removed in step 2 (Figure 5.1.8, middle panel). 
In the last step, interannual variations are included in the 
construction of the uncertainty range resulting in slightly 
larger uncertainties (Figure 5.1.8, right panel). Overall in 
the MS and US, a well-de�ned mean ozone pro�le with 
a relatively narrow uncertainty range is derived for the 
Antarctic spring. In the LS, however, the spread is quite 
large which given the overall very small ozone abundances 
during this time of the Antarctic ozone hole, results in very 
large relative di�erences (see also Chapter 4.1.6; Tegtmeier 
et al. [2013]). �e ozone hole with near-zero ozone values 
extends from 300 to nearly 50 hPa. Particularly between 
100 and 50 hPa, the uncertainty is much higher than in 
other altitude ranges with similarly low abundance (above 
0.3 hPa) or during other times of the year (not shown here). 
Such di�erences might be related to the di�erent sampling 
patterns of the individual instruments and for detailed 
evaluations of high-latitude ozone in the LS we recommend 
the use of coincident measurement comparisons, polar 
vortex coordinates and the use of in-situ measurements.

Ozone evaluations can depend on the time period chosen. 
If we limit the ozone pro�le comparisons to shorter time 
periods such as 2000-2010 or 2005-2010 we get very similar 
mean pro�les but a somewhat smaller uncertainty range. In 
particular, for the latter time period, the uncertainty range 
in the lower and middle stratosphere can be substantially 
reduced (see Figure A5.1.5 in Appendix A5). While this 
suggests a better agreement of the instruments covering the 
latter time period, one needs to keep in mind that fewer 
instruments go into this evaluation (�ve instead of eight) 
which have at the same time a denser sampling pattern. 
�e evaluation of the earlier time period 1991-2000 
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Figure 5.1.8: O3 vertical pro�le for 75°S - 85°S in October 1997-2010. Steps 1, 2 and 4 of deriving the O3 vertical pro�le 
diagnostic are shown. The uncertainty range (grey shading) is given for each level by the standard deviation over all selected  
datasets.

(Figure A5.1.6 in Appendix A5), on the other hand, gives a 
di�erent mean pro�le and a slightly larger uncertainty range 
due to larger interannual variability and, in comparison to 
2005-2010, larger instrument-spread. In previous model 
evaluations focusing also on the 1990s [SPARC, 2010; Eyring 
et al., 2006] the uncertainty range, based on the HALOE 
climatology and interannual standard deviations, was 
much larger than the new, multi-instrument uncertainty 
range introduced above.

Evaluation of the Arctic spring time ozone (here 75°N-85°N 
in March) shows a large inter-instrument spread, in 
particular in the MS/US (Figure 5.1.9, le� panel). �e 
spread is in most cases based on 1-2 outliers which are 
removed in step 2 resulting in a very narrow uncertainty 
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Figure 5.1.9: O3 vertical pro�le for 75°N-85°N in March 1997-2010. Same as Figure 5.1.8 but for 75°N-85°N in March.

range (Figure 5.1.9, middle panel). Due to the larger 
dynamical variability at the NH high latitudes, including 
the interannual standard deviation in the construction of 
the uncertainty range leads to much larger uncertainties, 
in particular in the MS. In contrast to the Antarctic, the 
inter-instrument spread in the LS is quite small leading to 
a well-de�ned pro�le with low uncertainties in this region.

Methane – CH4

Methane (CH4) meridional pro�les are similarly used 
in model evaluation to study stratospheric transport 
characteristics (see Eyring et al. [2006]). As mentioned 
above, transport in the stratosphere involves both the 
residual mean circulation and isentropic mixing, with the 
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latter being highly inhomogeneous in space and time. �e 
winter hemisphere surf zone thereby constitutes a region of 
strong stirring and mixing, whereas the subtropical edges 
and the polar vortex are barriers to transport and mixing 
processes. Failing to reproduce the strength of these mixing 
barriers can lead to wrong distributions of long-lived 
and reactive trace gas species with potentially signi�cant 
impacts on the ozone chemistry. �e meridional pro�le 
of methane (or any other long-lived trace gas) reveals the 
existence of transport and mixing barriers in regions where 
tracer gradients are large. On the other hand, small tracer 
gradients indicate regions of strong mixing. 

Only three instruments participating in the SPARC Data 
Initiative measured CH4. �e conclusions of Chapter 4, 
supported by other validation studies from the literature, 
suggest to treat the two MIPAS retrievals (high-spectral 
and high-spatial resolution) as two di�erent instruments, 
hence Figures 5.1.10 and 5.1.11 include four datasets each.

Figure 5.1.10 shows the meridional pro�le of methane 
at 50 hPa. �e uncertainty range in step 1 is relatively 
large, especially in the SH polar vortex region, where the 
diagnostic is used to test the relative strengths of mixing 
across the polar vortex edge versus descent within the 
polar vortex. Removing multi-annual mean values with 

Figure 5.1.10: Climatological CH4 meridional pro�le at 50 hPa in October over the time period 1998-2010. Steps 1 and 4 
of deriving the meridional pro�le of CH4 are shown in the upper two panels. The uncertainty range (grey shading) is given for 
each month by the ±2𝜎 standard deviation over all selected  datasets (left panel). In the middle panel the newly derived un-
certainty range (accounting for interannual variability) is shown, and in the right panel it is compared to the old uncertainty 
range given in the CCMVal report.

CH4, October, 50 hPa

CH4, October, 30 hPa

Figure 5.1.11: Climatological CH4 meridional pro�le at 30 hPa in October over the time period 1998-2010. Same as 
previous Figure, but for the 30 hPa level.

an interannual variability larger than the ±2𝜎 standard 
deviations from step 1 and accounting for interannual 
variability yields a much smaller uncertainty range. �is 
uncertainty range compared to the one used in Eyring et 
al. [2006] is shown to have improved in two aspects. First, 
the strong gradient across the polar vortex edge is much 
better de�ned than by using HALOE measurements alone. 
Second, HALOE mean values are much lower than the new 
multi-instrument mean values, in particular within the 
polar vortex region. �e models (from Figure 5 in Eyring 
et al. [2006]) would hence compare much more favorably 
to the new instrument mean than to the old measurement 
diagnostic derived from HALOE. Note that the HALOE 
reference does not improve using a more limited range of 
years (e.g., 2003-2005), but loses latitudinal coverage due 
to increasing sampling limitations towards the end of the 
mission. 

Figure 5.1.11 shows the meridional pro�le of methane at 
30 hPa. �is level is chosen in order to illustrate that the 
comparison between the HALOE reference (as calculated 
in an equivalent way to that used in the CCMVal report 
at 50 hPa) and the multi-instrument mean and standard 
deviation from the SPARC Data Initiative datasets is 
altitude dependent. �e comparison has much improved in 
terms of latitudinal structure, although the HALOE mean 
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values are still generally somewhat lower than those of the 
other instruments.

5.1.3 Recommendations for short-lived species 

Short-lived species are characterised by chemically driven 
variations linked to the local solar time (LST). Limb-
viewing instruments measure at LSTs that can di�er from 
instrument to instrument, and between seasons and 
latitudes for the same instrument. Most of the instruments 
measure two distinct LSTs per latitude. �ese instruments 
are in polar sun-synchronous orbits, with one LST for the 
ascending portion of the orbit and one forthe descending 
portion. In the case of solar occultation sounders, 
measurements correspond to sunrise and sunset as seen 
from the satellite and the LSTs shi� with the day of year. 

�e SPARC Data Initiative produced two types of 
climatologies for the diurnally varying species; climatologies 
from observations binned by LST (unscaled), and 
climatologies from observations scaled to a common LST. 
�e climatologies from instruments in a sun-synchronous 
orbit are generally based on measurements separated into 
am and pm data. Climatologies from instruments that 
observe from non sun-synchronous orbits are generally 
separated into daytime and night-time measurements. 
Exceptions are the climatologies from solar occultation 
measurements which are based on data separated into local 
sunrise and sunset measurements. Additional climatologies 
are compiled using a photochemical box model to scale the 
measurements to a common LST, as explained in detail in 
Section 3.1.2.

When evaluating short-lived species from chemistry-climate 
models with the SPARC Data Initiative climatologies, the 
comparisons will be meaningless in most cases, if the 
monthly zonal mean model output is constructed in the 
traditional way by averaging over all longitudes at each 
output time step. Since most of the SPARC Data Initiative 
climatologies correspond to speci�c LSTs or times of day, 
the model output needs to be sampled in a similar manner. 
Even for instruments like SMILES, that observe species 
at varying LST because of their non sun-synchronous 
orbit, the constructed zonal mean climatologies are biased 
towards particular LSTs as a result of the non-homogeneous 
sampling patterns [Kreyling et al., 2013]. Ideally, model 
data should be sampled with the satellite sampling patterns 
including the position and LST of each measurement. Trace 
gas climatologies derived from thus sampled model �elds 
can be directly compared to the trace gas climatologies from 
the respective satellite instrument. While this approach is 
well suited for the comparison of short-lived species, it also 
means a lot of e�ort given that each satellite instrument 
has a di�erent sampling pattern. Alternatively, the model 
output could be �ltered according to LST in a manner 
similar to the SPARC Data Initiative climatologies in order 
to construct datasets corresponding to a particular LST, 
am/pm, day/night, or local sunrise/local sunset conditions. 
Another possibility is to restrict comparisons between 

model and satellite climatologies of short-lived species to 
latitude and altitude regions where the diurnal variations 
are small. Guidelines for appropriate comparisons of the 
individual short-lived species are given below. 

• NO measurements show strong gradients at sunrise 
and sunset and model output should be �ltered to 
construct sunrise and sunset (comparable to ACE-FTS 
or HALOE) or 10am LST (comparable to MIPAS or 
scaled ACE-FTS) climatologies. 

• NO2 diurnal variations are also most pronounced during 
sunset/sunrise. Model data should be �ltered in order to 
construct sunrise/sunset (comparable to HALOE, SAGE II, 
POAM III, SAGE III and ACE-FTS) or 10am/10pm LST 
(comparable to MIPAS, SCIAMACHY, GOMOS or scaled 
OSIRIS, HIRDLS, and ACE-FTS) climatologies. If the 
model output is binned into daytime or night-time data 
instead (comparable to MIPAS, SCIAMACHY, GOMOS, 
OSIRIS, HIRDLS am/pm) di�erences of up to 20-30% can 
arise from the diurnal variations.

• NOx is longer lived and has small diurnal variations 
in the MS. Data should be �ltered to construct sun-
rise/sunset (comparable to HALOE and ACE-FTS) or 
10am/10pm (comparable to MIPAS, SCIAMACHY, or 
scaled OSIRIS, and ACE-FTS) climatologies. Compari-
son of un�ltered monthly zonal mean climatologies can 
result in di�erences of around 20%. Binning the model 
output into daytime/night-time will not improve the 
comparison since there are no pronounced gradients at 
sunrise/sunset. 

• HNO3 is fairly long-lived in the UT to MS and shows 
a weak diurnal cycle in the US which increases further 
in the LM. Zonal mean climatologies can be compared 
directly at altitudes below 3 hPa. 

• HNO4, ClONO2 and N2O5 climatologies show strong 
diurnal cycles above 10 hPa (100 hPa for N2O5) where 
model data needs to be binned according to sunrise/sun-
set (comparable to ACE-FTS) or 10am/10pm data (com-
parable to MIPAS). Below 10 hPa (100 hPa for N2O5), 
diurnal variations are weak allowing for a direct com-
parison of the datasets corresponding to di�erent LSTs. 

• ClO and BrO exhibit strong diurnal variations 
most pronounced during sunset/sunrise and with 
decreasing amplitude towards the USLM. Daytime 
variations are much smaller than night-time variations. 
For ClO, model data should be �ltered in order to 
construct sunrise/sunset (comparable to SMR) or 
daytime climatologies (comparable to Aura-MLS 
pm, SMILES daytime, MIPAS am, or scaled daytime 
SMR climatologies). Comparisons should focus on 
the tropical/mid-latitude US. For BrO, model output 
should be �ltered to construct daytime climatologies 
(comparable to scaled OSIRIS, scaled SCIAMACHY, or 
daytime SMILES climatologies). Comparisons should 
focus on altitude levels above 20 hPa. HOCl shows in 
contrast strong diurnal variations and model data need 
to be compiled according to instrument measurement 
times for a more meaningful comparison. 
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• HO2 shows a strong diurnal cycle with smaller variations 
during daytime than during night-time. Model data can 
be binned into daytime climatologies (comparable to 
SMILES and Aura-MLS daytime) and compared in the 
altitude region between 10 and 0.5 hPa. OH has a strong 
diurnal cycle and model output should be �ltered in order 
to construct daytime 2pm climatologies (comparable 
to Aura-MLS). CH2O and CH3CN show small diurnal 
variations, thus allowing for a direct comparison of 
datasets even if they apply to di�erent LSTs.

5.1.4 Suggestions for new diagnostics 

�e monthly zonal mean SPARC Data Initiative datasets 
provide a unique source of observational data for model 
evaluation diagnostics. Here, we present suggestions 
for new diagnostics covering di�erent aspects of model 
validation. �e new diagnostics use, in addition to the 
monthly zonal mean climatologies, parameters from the 
SPARC Data Initiative datasets that describe variability, 
location and timing of the underlying measurements.

CFC-11 mean pro�les and standard deviations

Pro�les of long-lived tracers (as also shown in Section 5.1.2 
for CH4) have been used extensively over the past to analyse 
the e�ects of diabatic descent and mixing in the polar vortex 
[SPARC, 2010]. Here, we show CFC-11 pro�les at the high 
SH latitudes (80°S-85°S) at the beginning (June) and end 
(September) of the Antarctic winter for MIPAS and the 
Whole Atmosphere Community Climate Model (WACCM) 
(Figure 5.1.12). �e comparison of June and September 
CFC-11 pro�les provides information on the combined 
e�ects of vortex descent, bringing lower CFC-11 mixing 
ratios downward, and of transport from lower latitudes, 
bringing higher CFC-11 mixing ratios towards the pole. 
Between 100 and 50 hPa, WACCM shows lower mixing 
ratios at the beginning of the austral winter but higher 
mixing ratios at the end of the winter when compared to 
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MIPAS. �us the CFC-11 decrease is not strong enough in 
the model suggesting that there is too little descent and/or 
too much mixing across the vortex edge.

Besides the monthly mean values, the SPARC Data 
Initiative datasets provide the standard deviations for 
each month, latitude bin and pressure level. Figure 5.1.13 
shows the standard deviation �elds which describe the 
variability within each latitude band and month and are 
calculated over all given measurements in the respective 
bin. At 30 hPa (upper panels), elevated standard deviations 
at around 20°S/N indicate stronger variability in the trace 
gas �eld caused by breaking of planetary scale waves at the 
tropical pipe edge. �e temporal extent (in the NH from 
December to March and in the SH from April to November) 
and magnitude of this event agree quite well between model 
and observations. Note that, at altitudes below 70  hPa, 
breaking synoptic scale waves cause more stirring and 
therefore prevent strong tracer gradients or any maxima 
in the standard deviation �eld. At 100 hPa in the tropics 
(~20°S-20°N), WACCM shows similar mean values but 
much lower standard deviations than MIPAS, which is very 
likely caused by the natural variability in this region being 
smaller than the MIPAS measurement error [Toohey et al., 
2010]. Most of the MIPAS variability is indeed explained by 
the MIPAS random error estimated to be around 17 pptv. 
Consequently, the standard deviation from observational 
�elds should only be used for model evaluations in regions 
where the natural variability is larger than the measurement 
error. However, at 30 hPa the comparison reveals a striking 
absence of variability in the model in the SH high latitudes 
throughout the year, but in particular during SH winter, 
when the observations show high variability. �is result 
implies a too low dynamical activity in the model, which 
may be related to the SH cold bias chemistry-climate 
models exhibit in this region [Austin et al., 2003]. 

�e comparison of the standard deviation �elds from 
MIPAS and WACCM at 100 hPa (Figure 5.1.13, lower 
panels) reveals the absence of a mixing minimum during 
summer in the SH mid-latitudes in the model. �e SH 
vortex edge region shows comparable variability during 
SH late winter, but higher variability in the model in early 
winter. �e situation reverses at the very high SH latitudes, 
where the model has much lower variability over most of 
the year. In particular, the low standard deviations in the 
model during the winter from June to September suggest 
that the inner vortex south of 70°S in WACCM is less 
disturbed than implied by the MIPAS observations. �us 
the missing decrease of the WACCM CFC-11 pro�les in the 
vortex during winter (seen from the pro�le comparisons 
in Figure 5.1.12) is probably caused by too weak diabatic 
descent and not by too strong in-mixing. MIPAS on the 
other hand, shows elevated standard deviations during the 
winter related to zonal asymmetries in the CFC-11 �eld 
which can be either caused by asymmetric descent or by 
in-mixing. One to two months a�er the vortex breakdown 
the standard deviation of the CFC-11 �eld increases due 
to longitudinal asymmetries. �is phenomenon can be 
observed earlier in MIPAS (December) than in WACCM 

Figure 5.1.12: Vertical monthly zonal mean CFC-11 
pro�les for 80°S-85°S in June and September for MIPAS 
and WACCM.
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(February) due to a late breakdown of the vortex in the 
model [de laTorre et al., 2012]. At the NH high latitudes, 
the standard deviations show better agreement between 
observations and model suggesting more similarities in the 
dynamical situation.

CH4 time-latitude evolution

While meridional and altitude pro�les of CH4 and N2O 
have been extensively used in the past to test stratospheric 
transport in chemistry-climate models [Eyring et al., 
2006; SPARC, 2010; Strahan et al., 2011], the SPARC 
Data Initiative monthly zonal mean climatologies lend 
themselves to also study the time evolution of these 
pro�les. Figure 5.1.14 shows to this end a comparison of 
the time-latitude evolution of CH4 at two di�erent pressure 
levels (2  and 10 hPa) between the multi-instrument 
mean derived from the HALOE, MIPAS, and ACE-FTS 
instruments, and the Canadian Middle Atmosphere Model 
using a simulation nudged to observed meteorology 
(CMAM30). As explained in more detail in Chapter 4.3, 
the feature at 2 hPa has been attributed to the equatorial 
Semi-Annual Oscillation (SAO) [Choi and Holton, 1991], 
with the maxima in tropical CH4 coinciding with maxima 
in upwelling. �e 2 hPa and 10 hPa levels are furthermore 
distinct in the CH4 variability seen in the polar region. At 
10 hPa, the minima in polar regions during autumn and 
winter coincide with the maxima in downwelling within 
the Brewer-Dobson circulation [Randel et al., 1998]. At 
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Figure 5.1.13: Time-latitude 
cross-sections of CFC-11 
standard deviation �elds 
for MIPAS and WACCM at 
30 hPa (upper panels) and at 
100 hPa (lower panels). The 
standard deviation describes 
the variability within each 
latitude band and month 
and has been calculated over 
all given data points in the 
respective bin and month.

2 hPa, on the other hand, the minima show up in summer/
autumn as the result of photochemistry, with CH4 lifetimes 
decreasing to four months at these altitudes [Randel et al., 
1998; Solomon, 1986].

Comparison of CMAM30 with the observations yields 
overall encouraging results, with CMAM30 clearly indicating 
a SAO. Furthermore, the timing and extent of the low CH4 
in polar regions correspond well between observations and 
model at both levels. However, some di�erences can also be 
identi�ed. For example in both hemispheres at 2 hPa, the 
photochemically induced minima during autumn are not 
quite as pronounced as in the observations. �is could be 
due to a problem in the chemistry, but more likely results 
from too strong mixing between the tropics and the higher 
latitudes (partially due to numerical di�usion in the rather 
low model resolution). Likewise, the maxima seen in the 
tropics are not quite as pronounced as in the observations, 
along with the minima in polar regions at 10 hPa, indicating 
that CMAM30 exhibits too weak upwelling/downwelling 
or again too strong horizontal mixing. �e overall good 
agreement between CMAM30 and the observations is 
partially due to using a model version that is driven by the 
observed meteorology. Note however that the in�uence of 
the nudging to the meteorological �elds weakens towards 
higher altitudes above 10 hPa, so that the model seems to 
at least partially represent the right dynamical mechanisms 
that produce the SAO.
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Figure 5.1.14:  Time-
latitude cross-sections 
of CH4 mixing ratios at 
2 hPa (upper panels) 
and 10 hPa (lower 
panels) from the multi-
instrument mean (left) 
and CMAM30 (right).

5.2 Implications for merging activities 

With monthly zonal mean time series of stratospheric 
constituents available from all the SPARC Data Initiative 
instruments, the obvious question is why these have not 
been merged into one homogeneous data product which 
globally covers multiple decades. �e reason is that such 
a project is a challenge in itself which requires solving a 
number of technical and methodological problems. One 
needs to try to eliminate outliers or even whole datasets if 
many problems are discovered (e.g., a�er a careful multi-
instrument comparison). Currently, there is not even 
full agreement about what the most appropriate merging 
techniques are. Techniques range from a simple merge of 
two single datasets by accounting for an inter-instrument 
bias that is calculated over some overlap time period 
[Bourrassa et al., 2014] to merging of multiple datasets 
including detailed calculations of uncertainties [Froidevaux 
et al., 2015], statistical methods to �ll in observational gaps 
[Bodeker et al., 2013], or the use of a nudged chemistry-
climate model as transfer function between the instruments 
[Hegglin et al., 2014].

Some of the problems arising in data merging can be solved 
by directly using the parent datasets instead of the merged 
dataset and using an analysis tool that is immune against 
one or the other of these problems. One example is the trend 
estimator by von Clarmann et al. [2010] which is immune 
against biases between subsets of data. An ideal solution 
for the general data merging problem, however, does not 
yet exist. �e �rst important step towards optimal data 

merging is to develop a common language and to develop 
schemes to evaluate and report retrieval errors, altitude 
resolution and content of prior information in the data in an 
inter-comparable manner. Given that all di�erent merging 
techniques have their weaknesses and strengths, it remains 
important that independent research teams approach data 
merging so that their results can be compared and used to 
identify not only instrument errors but also uncertainties in 
the merging techniques themselves.

In the following sections we discuss the most prominent 
problem areas that arise in data merging.

5.2.1 Error characterisation of instruments 

In the most straightforward scenario, multiple datasets 
are available for the same latitude bins and certain overlap 
time periods. In this case merging reduces to a weighted 
or unweighted mean of the data. �e obvious advantage of 
weighting the data by their inverse estimated error, usually 
in terms of variance, is that reliable data dominate the 
merged product. Drawbacks and pitfalls, however, are:

• �e error estimation schemes used for the di�erent 
datasets may di�er and di�erent error types may be 
included. �us, a better instrument can have larger 
error bars.

• For some instruments error covariances are reported, 
while for others only error bars are available. Optimal 
averaging, however, requires the covariance matrices.
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• For some instruments the error estimate includes by 
default the so-called smoothing error [Rodgers, 2000]. 
�is quantity, however, does not follow the generalised 
Gaussian error propagation law [von Clarmann, 
2014] and thus is not applicable to regridded data. 

Trying to avoid these problems by using the sample 
standard error of the zonal mean instead of the error 
estimates is not as simple as one might think, because (a) in 
the case of regular sampling patterns measurements cannot 
be regarded as independent random samples and thus the 
standard error is not the sample standard deviation divided 
by the square root of the sample size [Toohey and von 
Clarmann, 2013]; and (b) sophisticated schemes are needed 
to distinguish the two components of the standard error 
of zonal means, namely measurement errors and natural 
variability [Laeng et al., 2014; So�eva et al., 2014].

A particular problem is that the quality of the measurement 
can depend on the atmospheric state itself, e.g., in infrared 
emission spectroscopy the signal is larger and thus the 
precision is better when it is warmer. Weighting by the 
inverse error variance in such a case would introduce 
a representativeness bias towards warmer parts of the 
atmosphere.

Another problem arises from denotation ambiguities. Many 
terms used for error characterisation are not clearly de�ned, 
used in di�erent contexts, and have ambiguous meanings. 
Accuracy characterises in some cases the total error, in 
other cases only the systematic part, precision excluded. 
�e systematic error in some documents includes all error 
sources except noise, in other cases only error terms which 

are - in amount and sign - time-independent. Noise o�en 
is referred to as the random part of the error while equally 
o�en it is used for the pure measurement noise only. Some 
total errors are more comprehensive than others. Some 
error budgets refer to an ideal point measurement and 
include the so-called smoothing error which characterises 
the expected di�erence between the atmospheric state at 
one idealised atmospheric point and in a �nite air volume. 
Other error budgets refer to the atmospheric state at �nite 
resolution and do not include the so-called smoothing 
error.

5.2.2 Drifts and jumps between datasets 

Dri�s within datasets are o�en unknown because, contrary 
to the usual validation measurements, dri� estimation 
requires availability of long-term datasets. Even if these are 
available, it is not always clear which of the instruments 
compared to each other has a dri�. For trace gases where 
a large number of instruments are available, such as ozone, 
the long-term changes of the di�erences can provide 
information on possible dri�s [Tegtmeier et al., 2013]. 
�erefore, for each instrument an analysis of the temporal 
variations of the di�erences with respect to each of the 
other instruments has been performed. Such time series are 
characterised by seasonal patterns and month-to-month 
variability. A�er removing the seasonal cycle, longer-term 
changes can be the dominant signal. However, for nearly 
all ozone datasets and regions included in this study the 
di�erences display no apparent long-term changes. One 
example for this consistency is shown in Figure 5.2.1 
(upper le� panel) in the form of the instrument di�erence 
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Figure 5.2.1: Time series of ozone deviations for 2002-2010. Deviations of all instruments with respect to OSIRIS and 
GOMOS for 30°N-60°N at 100 hPa (upper panels), with respect to Aura-MLS for 30°S-30°N at 5 hPa (lower left panel) and with 
respect to SCIAMACHY for 10°S-10°N at 5 hPa (lower right panel) are shown.



303Chapter 5: Implications of results

with respect to OSIRIS in the NH mid-latitude LS. A few 
exceptions exist where clear changes of the di�erences over 
time can be identi�ed (Figure 5.2.1). First, di�erences of 
all instruments with respect to GOMOS in the NH mid-
latitude LS are mostly negative before 2008 and mostly 
positive a�erwards indicating a change of GOMOS over 
time that is not seen by the other instruments. Note that 
GOMOS is excluded from the comparison to OSIRIS 
discussed above in order to present one example where 
the di�erences display no apparent long-term changes. 
For Aura-MLS, some discrepancies can be observed for 
the tropical US, with positive di�erences at the beginning 
and negative di�erences at the end of the time period, 
although not all instruments agree on this. SCIAMACHY 
di�erences in the tropics are dominated by the quasi-
biennial oscillation (QBO) signal, while SMR (not shown 
here) displays larger values compared to the other datasets 
in 2003 but di�erences around zero a�er 2006. Note 
that here only dri�s of a magnitude comparable to the 
deviations themselves have been identi�ed; while for trend 
studies a more thorough analysis including possibly quite 
small long-term dri�s is necessary.

Another option is the comparison of the instruments’ time 
series with a model (used as a transfer function in the 
merging) which can yield additional evidence for which 
instrument is more likely to show a dri� or a jump [Hegglin 
et al., 2014]. An example for this is shown in Figure 5.2.2, 
where two data versions of SAGE II (v6.2 and v7.0) are 
compared to each other and a distinct di�erence in the 
beginning of the data record is revealed. �e very good 
agreement between the maroon-coloured data version (v7.0) 
and the model (as seen in the bias-corrected di�erences 
�uctuating randomly around zero) provides the user with 
con�dence that the red data version (v6.2) su�ers from an 
inhomogeneity at the beginning of its record and therefore 
should not be used for merging during this time period.

Finally, the choice of well-established in-situ measurements 
as reference instruments, which usually are trusted more 
than remote sensing instruments, leads to the problem of 
o�en lacking statistical signi�cance and representativeness 
due to low data amounts. Despite this shortcoming, 
ground-based measurements of ozone from sonde and 
lidar networks have been shown to allow for comprehensive 
analysis of the long-term stability of satellite ozone datasets 
[Hubert et al., 2015]. A complication of all these types of 
validation studies is that the reference instrument (or 
model) itself needs thorough validation. 

For certain regions and/or time periods, available datasets 
do not overlap in time. In this case, it is not clear if any 
jumps in the data re�ect natural variability or instrument 
biases. A model as a transfer standard again can help here 
[Hegglin et al., 2014]. While this approach may be seen as 
contaminating an otherwise purely empirical product with 
model information, it capitalises on our physical knowledge 
of the atmosphere and provides at least a best estimate of 
what happened during a time period when observations 
were not available. 
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Figure 5.2.2: Model-based bias and drift estimates of 
observational data. Time series of water vapour (upper 
panel) and bias-corrected di�erence to the model (lower 
panel) at 10 hPa and 40°N from two data versions of SAGE II 
water vapour (with red indicating v6.2 and maroon dots 
v7.0) and the Canadian Middle Atmosphere Model CMAM 
nudged to observed meteorology (grey line). Irregular 
behaviour in the bias-corrected di�erences reveals a 
problem in the red data version.

5.2.3 Altitude resolution and a priori information 

Key problems in any application where remote measure-
ments of multiple instruments are considered are di�erent 
altitude resolutions and di�erent content of a priori 
information in the datasets. Some of the related problems 
can be solved by application of the averaging kernel matrix 
[Rodgers, 2000]; e.g., the averaging kernel matrix can be 
used to degrade the altitude resolution of a high-resolution 
pro�le to make it comparable to a lower-resolution pro�le 
[Rodgers and Connor, 2003]. Such an approach has been 
applied in the SPARC Data Initiative when comparing 
the limb-viewing instruments with the nadir sounder 
TES in order to cross-validate ozone distributions in the 
UTLS with an independent dataset [Section 4.27; Neu et 
al., 2014a]. TES measurements have been well-validated 
against ozonesondes in the UTLS and the dataset is 
frequently used for the evaluation of tropospheric ozone 
in chemistry-climate models. Observations of the higher 
vertical resolution limb sounders have been smoothed 
using the observational operator of TES. In the tropical 
UTLS, large positive biases of up to 50% have been 
identi�ed for the limb-sounders with respect to the TES. 
While this study successfully provides a common basis for 
comparison of the large-scale ozone morphology in the 
UTLS, a couple of general problems remain unresolved for 
the general application of such comparisons:
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• �ere exists a large number of datasets for which 
no averaging kernels are available, and can - due to 
the particular retrieval scheme used - not easily be 
produced.

• �e application of the averaging kernel fails if the 
better resolved pro�le does not have su�cient altitude 
coverage to allow this operation for all relevant 
altitudes. �ere exist ad hoc solutions to this problem 
but these are not exact (see Section 4.27 or Neu et al. 
[2014a]). In the SPARC Data Initiative evaluations, the 
TES a priori has been used to �ll in the pro�les below 
the lowest measurement level. To identify regions where 
the results are highly sensitive to this approach, virtual 
retrievals using two di�erent �lling methods have been 
calculated and compared.

• �e situation is even worse if the altitude resolution of 
a measurement depends on the atmospheric state. �is 
causes artefacts in estimated trends [Yoon et al., 2013] or 
amplitudes of annual cycles (see Section 4.2 or Hegglin et 
al. [2013]). 

5.3 Implications for future planning of satellite limb-
sounders 

Past observations from limb satellite sounders have 
provided us with invaluable information on the chemistry 
(e.g., Waters et al. [1993]; Santee et al. [1998]), transport (e.g., 
Park et al. [2007]; Stiller et al. [2008]; Hegglin et al. [2009]; 
Gille et al. [2014]), and dynamics of the stratosphere (e.g., 
Randel et al. [1993]; Manney et al. [2009]). �is information 
has helped us understand many key aspects of the processes 
involved in stratospheric ozone depletion, the Antarctic 
ozone hole, and climate change. While we had a wealth of 
stratospheric limb observations during the past 30 years, it 
now has to be expected that there will be a lack of adequate 
limb measurements in the near future. �is looming 
problem is due to an ageing �eet of currently still �ying 
limb sounders (Aura-MLS, ACE-FTS, ACE-MAESTRO, 
OSIRIS and SMR) along with the lack of any concrete plans 
to launch new instruments except for SAGE III on the 
International Space Station (ISS) (which o�ers only limited 
spatial coverage) and the OMPS instruments (which only 
measure O3, NO2, and aerosol). �ese instruments may not 
be able to provide continuous temporal coverage, due to a 
nominal mission duration of Suomi NPP until 2016 and a 
replacement of the limb-viewing OMPS capacity on JPSS-2 
in 2022 only.   

�e evaluations within the SPARC Data Initiative illustrate 
that there is no single best instrument that potentially 
covers all measurement needs, because instruments di�er 
greatly in their measurement characteristics such as spatial 
and temporal sampling, viewing geometry, accuracy 
and precision, and measurement stability (Chapters 2 
and  3). It is only through careful comparison between 
the instruments as done in this report that outliers can be 
detected, and weaknesses and strengths of instruments in 
measuring di�erent species can be identi�ed. An example is 

the realisation that SAGE II o�ers a valuable water vapour 
product that helps to extend the water vapour record from 
satellite observations (in particular HALOE) back to the 
late 1980s and also to improve this climate data record 
more generally [Chapter 4.2; Hegglin et al., 2013; 2014].

Our evaluations also demonstrate clearly that there is no 
single instrument that can provide measurements of the full 
suite of atmospheric trace gas species with a high vertical 
and horizontal resolution, high accuracy and precision, 
and dense data coverage. Only a comprehensive set of high 
quality instruments that are complementary with respect 
to data coverage and target species allows development 
of a global picture of stratospheric composition. Such 
datasets enable among other things the analysis of temporal 
variations on di�erent time scales and the quanti�cation 
of important chemical budgets e.g., of the chlorine family. 
As discussed in the previous Section (5.2), data merging, 
even in the case of multiple overlapping instruments, 
poses a real challenge and complicates our understanding 
of long-term changes of the stratosphere in a changing 
climate. �e future scenario we are currently facing with 
no overlap between instruments will render it impossible 
to derive reliable long-term changes of atmospheric trace 
constituents such as water vapor, ozone, and aerosol, and 
other important transport tracers.

Not only water vapour, but also other chemical trace gas 
species can be di�cult to measure, especially when their 
atmospheric mixing ratios are close to the instruments’ 
detection limits. Where agreement between instruments 
is found, the atmospheric mean state distributions and 
variability of trace gas species can be considered well-known 
(ozone [Tegtmeier et al., 2013], water vapour [Hegglin et al., 
2013], N2O, and CH4 [Hegglin et al., in prep.]). However, 
for other species that are measured by a few instruments 
only and for which not many ground-based validation 
measurements are available, our knowledge is still limited 
(many short-lived species such as HO2, OH, BrO, ClO, etc.). 
It is key for the future planning of satellite limb sounders to 
design measurement systems that not only �t the purpose 
of covering speci�c measurement needs (in terms of 
scienti�c research question, region of interest, resolution, 
accuracy and precision, species list required), but also that 
o�er redundancy between measurements, so that problems 
can be identi�ed and adequately investigated.




