Research Using LITOS

(Leibniz-Institute Turbulence Observations in the Stratosphere) Ultra-High-Resolution Radiosondes

Michael Gerding Anne Haack (nee Theuerkauf), Andreas Schneider, Franz-Josef Lübken

Leibniz-Institute of Atmospheric Physics

Kühlungsborn, Germany

Turbulence in the stratosphere - Scales

LITOS measurement principle: wind (CTA)

Calibration in climate chamber - King's law

Theuerkauf et al., AMT, 2011

Calibration in vacuum chamber - King's law

Theuerkauf et al., AMT, 2011

Gerding et al.: LITOS ultra-high resolution sondes

LITOS measurement principle: temperature (CCA)

Resistance thermometer

(Constant-Current-Anemometer)

- Wire diameter 3.8 μm
- Current kept constant
- 2-8 kHz sampling rate

U measure of resistance = temperature

Determination of energy dissipation rate

Turbulent and non-turbulent spectra

BEXUS launches

Payload size: 60*70*60 cm Payload mass: 121 kg Balloon size: 10 000 m³

SSC/DLR

3 soundings at Kiruna:
8 October 2008 (BEXUS 6)
10 October 2009 (BEXUS 8)
27 September 2011 (BEXUS 12)

EIBNIZ-INSTITUT SÜR ATMOSPHÄREN PHYSIK

LITOS - turbulence measurements

Thickness of turbulent layers (BEXUS 8)

BEXUS 8: Energy dissipation rates (wind)

BEXUS 8: Energy dissipation rates (temperature)

BEXUS 8, 10 October 2009

BEXUS 8, turbulence in wind and temperature

BEXUS-8 vs. BEXUS-12: Energy dissipation

BEXUS-8 vs. BEXUS-12: Background wind

BEXUS 12: Energy dissipation and Ri number

BEXUS 12 Thorpe analysis

BEXUS 12: Fine scale of turbulent layers

LEIBNIZ-INSTITUT for atmosphären PHYSIK

BEXUS 12: Thorpe from RS and CCA

BEXUS 8 Thorpe analysis

Summary and Conclusions

- LITOS: simultaneous in-situ measurements of wind and temperature fluctuations in the stratosphere
- Transition to viscous subrange → dissipation rate computed directly from spectrum
- Turbulent layers typically only 30 50 m thick (temperature thinner than wind)
- BX8/BX12: Great variability in ε → to be further investigated (e.g. source of turbulence)
- Partly turbulent wind layers not visible in temperature
- ε from Thorpe analysis compares within factor ~3

new lightweight payload under development

