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Chapter 3: Challenges for trend studies 

This chapter aims to provide information that, in Chapter 
5, assists the interpretation of the long-term trends derived 
from the ozone profile data records described earlier. 
Profile trends can differ for a variety of reasons and 
this represents a real challenge to assess the long-term 
evolution of ozone (e.g., WMO, 2014; Harris et al., 2015; 
and references therein).

One of the primary drivers of differences in trends comes 
from the data sets themselves. First of all, single-instrument 
data records can differ in terms of their stability, their 
accuracy, and their sampling and smoothing properties 
in the spatial and temporal domain. The stability of a 
data record can be affected by aging of or changes in 
instrumentation, which stems from evolutions in the 
operation or calibration procedures, etc. Secondly, inter-
instrument biases lead to discontinuities in merged data 
records for each transition from one set of instruments to 
another. The ability to adjust for offsets between instrument 
records depends on how they are merged and especially 
on the sampling properties and data quality of the records 
(Tummon et al., 2015). This merging step is unavoidable 
for satellite data since no single instrument provides both 
the spatial and the temporal coverage needed to study 
multi-decadal trends at the near-global scale. In Section 
3.1, we report the results of intercomparisons of different 
single-sensor or multi-sensor data records. These studies 
aim to identify potential artefacts in the time series, which 
can help us understand the cause of discrepancy between 
trends.

Another possible cause of differences in trends from 
intercomparisons lies in the reduction of the single 
profile data to monthly zonal mean data. Changes in 
the sampling pattern introduce a changing bias in the 
presence of spatio-temporal gradients in the ozone 
field (e.g., diurnal and seasonal cycles or meridional 
structure). Differences in sampling properties also affect 
the comparison of ground-based and satellite trends. 
The satellite monthly zonal mean time series are not 
necessarily representative of the monthly mean values 
observed above the station. Both issues are studied in 
more detail in Section 3.2.

3.1   Consistency of ozone profile data records

3.1.1  Homogeneity of ground-based network data

In this section, we investigate inhomogeneities in the 
ground-based data records; these may occur in time 

(e.g., due to changes in instrumentation, instrument per-
formance, or calibration) and in space (e.g., due to differ-
ences in instrumentation, instrument performance, or 
calibration between sites). We describe the key results of 
exploratory work by Hubert et al. (2019) on the homogene-
ity of ozone profile observations gathered by ground-based 
networks between 2002 and 2016. They used an ensemble 
of complementary high quality satellite data records as a 
transfer standard to investigate the data at 60 ozonesonde, 
8 lidar, and 5 microwave radiometer stations operating 
within the NDACC, GAW, and SHADOZ networks. A de-
scription of these ground-based instruments can be found 
in Section 2.1.1 of this Report. More detailed findings, dis-
cussion and conclusions of this exploration can be found in 
Hubert et al. (2019).

The analysis of Hubert et al. (2019) starts off with the follow-
ing steps. Profile data from a ground-based record XL (e.g., 
ozonesonde data at a given location L) and a space-based re-
cord YM (e.g., of satellite mission M) are first cleared of spuri-
ous measurements, then co-located in time and space (the 
window is detailed in the next paragraph), then converted 
to the same profile representation (ozone unit and vertical 
coordinate), and then finally interpolated to a common ver-
tical grid. Ozonesonde and lidar data are smoothed to the 
vertical resolution of the satellite data, which differs for each 
instrument M (Table 1b in Hassler et al., 2014). The second 
part of the analysis consists of computing the relative differ-
ence ΔLM(z,ti ) = 100*(XL,i - YM,i )/YM,i for each profile pair i. For 
the sake of brevity, the indices L and M are excluded from 
the formulae that follow. These Δ(z,ti) form a time series of 
relative differences (expressed as a percentage) which are 
smoothed using an N-month running median filter centered 
around the middle of each month j, which we denote Δ*(z,tj). 
What are used in the final analysis are time series of relative 
difference anomalies δ (expressed as a percentage),

(3.1).

Here, ∆(z) represents the median value of {Δ(z,ti)} for all ti 
in the reference period, which is 2005–2011 for all instru-
ments except OMPS-LP where 2012–2016 was chosen (see 
grey horizontal line in Figures 3.1 – 3.4). By removing the 
satellite- and grid level-dependent median value, the val-
ues of δ at different grid levels (z and z’) and from different 
satellite records (M and M’) are on a comparable scale. The 
δ time series represents anomalies of the relative difference 
of ground-based minus satellite observations with respect 
to their median value over the reference period. Positive 
anomalies indicate that the ground-based bias relative to a 
satellite is more positive (or less negative) than usual during 
the reference period and vice versa for negative anomalies. 
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Table 3.1:   Characteristics of nine limb/occultation satellite data records. The last column indicates whether the data 
were used for the study of the homogeneity of ground-based data records (G; see Section 3.1.1) and/or for the estimation 
of satellite drift (S; see Section 3.1.2).

By construction, these positive and negative anomalies 
average to zero over the reference period, but this is not 
necessarily the case outside of this period. The median was 
preferred over the mean for Δ(z) to avoid the impact of sin-
gle outliers on the absolute scale of the anomaly time series. 
The uncertainty (2σ) of the anomalies (δ) is estimated as 
half the 95 % interpercentile of the Δ values in the running 
window divided by the square root of the number of pairs 
in that window. The absolute scale holds valuable infor-
mation but is mostly disregarded here, as it can be offset 
for different M due to differences in the reference period 
or differences in the sampling of the co-located data set. 

Different filter window lengths N were investigated. We only 
show results for a 12-month wide window, which balances 
the need to reduce the noise in the comparisons in order to 
identify small anomalies and the desire to preserve informa-
tion to localise identified anomalies sufficiently well in time. 
The influence of natural variability is considered negligible 
because of the large smoothing window but especially be-
cause the pairs are well co-located in space (< 300km for 
comparison to MWR; all others < 500km) and time (< 1h for 
MWR stations with hourly data;  < 6h for MIPAS and Aura 
MLS; all other comparisons < 12h).

Inhomogeneities in the ground-based data reveal themselves 
in the temporal and vertical structure of the relative differ-
ence anomalies. Increased confidence that anomalies are 
caused by (originate in) the ground-based record L is found 
when the δLM values are significant for multiple indepen-
dent satellite references {M} over the same altitude region 
and during the same period in time. The six limb and oc-
cultation satellite records selected for this study represent 
complementary measurement techniques (different spectral 
ranges, viewing geometries, sampling properties, calibra-
tion and retrieval methods) and can therefore be consid-
ered independent. The consideration of six complementary 
and independent satellite records is a vital asset in attribut-
ing common features in δLM to the ground-based data. We 
considered OSIRIS, GOMOS, MIPAS, SCIAMACHY, Aura 
MLS, and OMPS-LP as references (Table 3.1), which are all 
fairly dense samplers that have been thoroughly validated 

and intercompared in recent years (Tegtmeier et al., 2013; 
Hassler et al., 2014; Rahpoe et al., 2015; Hubert et al., 2016). 

Figure 3.1 shows anomaly time series δ for the MLO lidar 
station in Hawaii, USA and the six satellite records. Stippled 
cells are not statistically different from zero at the 2-sigma 
level. The temporal and vertical structure is fairly feature-
less with only a few areas showing significant anomalies, 
which shows the good and stable agreement between this 
lidar record and the different satellite references. While sig-
nificant positive anomalies are apparent from 2002 to 2004 
for OSIRIS, GOMOS, and SCIAMACHY, the statistically 
significant region is not fully coherent between the three 
references, which leaves ambiguity as to whether the differ-
ences are caused by the ground-based or the satellite record. 
Significant negative anomalies of ~4 % are apparent at 40–
45 km starting in early 2013 for both OSIRIS and Aura MLS. 
Unfortunately, OMPS-LP cannot confirm this finding as it 
only started taking measurements in 2012. However, this 
feature resides at the upper end of the lidar profile where the 
uncertainty of the measurement becomes larger and hence 
larger anomalies are expected (e.g., see Figure 16 of Leblanc 
et al., 2016b).

Figures 3.2 to 3.4 show selected results for ozonesonde, lidar, 
and microwave radiometer station records. It is not the pur-
pose of this Report to discuss each station record individu-
ally as these can be found in Hubert et al. (2019). Instead, 
we focus on the general performance of the ground-based 
networks. The majority of the ground station data records 
exhibit one or more temporal features in their anomaly field 
with a magnitude of 5 % and often more. These features 
manifest themselves as (a series of) sudden discontinuities 
or as transient events over a variety of timescales, but they do 
not necessarily occur over the entire vertical range.

Some observed discontinuities coincide with, and are caused 
by, known changes in instrumentation. For instance, the 
switch from the KC-96 to the ECC ozonesonde at Naha sta-
tion in November 2008 (Morris et al., 2013) is clearly visible 
as a +10 % discontinuity in Figure 3.2 (panel B). A correction 
scheme has been developed (Section 2.1.1.1) which should 

Instrument Platform Analysis period Level-2 data version Viewing geometry Spectral range Analysis

SAGE II ERBS 1984-2005 v7 solar occultation UV-VIS-NIR S

HALOE UARS 1991-2005 v19 solar occultation NIR-SWIR S

OSIRIS Odin 2001-2016 v5.10 limb scattered UV-VIS-NIR G, S

GOMOS

EnviSat

2002-2011 ALGOM2s v1 stellar occultation UV-VIS-NIR G, S

MIPAS 2005-2012 IMK/AA v7 limb emission MIR-TIR G, S

SCIAMACHY 2003-2012 IUP v3.5 limb scattered UV-VIS-NIR G, S

ACE-FTS SciSat-1 2004-2016 v3.5/v3.6 solar occultation MIR-TIR S

MLS EOS/Aura 2005-2016 v4.2 limb emission MW G, S

OMPS-LP Suomi-NPP 2012-2016 USask-2D v1.0.2 limb scattered UV-VIS G, S
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understand these anomalies, to find the cause of the chang-
es, and to ultimately develop a correction strategy. 

In this respect, we comment that simply adjusting to an-
other observational data record will lead to a loss of inde-
pendence between records. Clearly, this should be avoided 
as much as possible.

result in a more homogeneous time series. Another example 
is the positive (negative) bias excursion above (below) the 
ozone maximum starting in 2010 and ending in 2012 in the 
Hohenpeissenberg lidar record (Figure 3.3; panel A). These 
are likely related to an aging device that fired the laser until 
it was replaced in early 2013 (W. Steinbrecht, private comm.). 
However, in many cases further investigations are needed to 

Figure 3.1:  Smoothed anomaly time series (δ, see Eq. 3.1) of the relative difference of MLO lidar and six satellite ozone profile 
data records (top to bottom). Red values indicate regions in which lidar measurements are biased more positive (or less nega-
tive) compared to satellite than their median value during the reference period. Stippled areas denote δ values that are not 
statistically different from zero at the 2-sigma level. A running average with a 12-month window was used to smooth the time 
series. Thin grey vertical lines show the sampling of the co-located profile data records; the grey horizontal lines indicate the 
reference period for each comparison. Adapted from Hubert et al. (2019).
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Our results indicate that most of the 73 considered station 
records (60 ozonesonde, 8 lidar, and 5 MWR) have one or 
more periods with inhomogeneities over part of the verti-
cal range of the data record. Such artefacts are noted even 
in ground-based data records that are generally consid-
ered as “golden” time series for trend studies (because of 
their length and/or supposedly better stability). Examples 

are shown in Figures 3.2 (A), 3.3 (A&B), and 3.4 (A). The 
magnitude of the anomalies is broadly consistent with the 
quoted 5–10 % systematic uncertainty of the ground-based 
measurement techniques (Section 2.1). Nonetheless, it il-
lustrates the importance of clarifying to data users that the 
quoted systematic uncertainty is pertinent to every single 
ozone profile and that the sign and magnitude may change 

Figure 3.2:  As Figure 3.1 but for two ozonesonde sites each with a different selection of three satellite references. Stippled 
areas denote non-significant δ values. Comparisons to all six satellite records for both stations are shown in Figures S3.1 and 
S3.2 in the Supplement. Adapted from Hubert et al. (2019).
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over the data record, thereby effectively representing a non-
systematic uncertainty component in the time domain.

Measurement artefacts are generally not modelled in regres-
sion analyses, thereby introducing random and systematic 
uncertainty in profile trends. These artefacts are furthermore 
dependent on the station and the vertical level. Single large 

Figure 3.3:  As Figure 3.2 but for two stratospheric ozone lidar sites. Stippled areas denote non-significant δ values. Com-
parisons to all six satellite records for both stations are shown in Figures S3.3 and S3.4 in the Supplement. Adapted from 
Hubert et al. (2019).

discontinuities or multiple discontinuities with the same sign 
constitute a low frequency signal which will clearly bias the de-
rived trend. The likelihood of such trend biases decreases with 
an increasing number of excursions as long as their sign and 
magnitude is sufficiently random in time. The random uncer-
tainty of the trend estimate, on the other hand, will unavoid-
ably accrue contributions from the unmodelled variance. 
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instruments at one site have been reported repeat-
edly in past and recent analyses (e.g., Steinbrecht et 
al., 2006; Logan et al., 2012; Nair et al., 2013, 2015; 
Tarasick et al., 2016; Van Malderen et al., 2016). 

A comparison of trends from different instruments at 
Lauder and Hawaii using the same regression model will 
be shown in Section 5.4. 

A detailed time series analysis is needed to quantify 
the possible impact of measurement inhomogeneities 
on ozone profile trends. However, since both occur-
rence and magnitude of the artefacts depend on the 
site and the ground-based instrument, it is expected 
that the profile trends will (also) differ as a result of 
the additional bias and variance. Such differences be-
tween neighbouring sites and between ground-based 

Figure 3.4:  As Figure 3.2 but for two microwave radiometer sites. Stippled areas denote non-significant δ values. Comparisons to 
all six satellite records for both stations are shown in Figures S3.5 and S3.6 in the Supplement. Adapted from Hubert et al. (2019). 
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A pragmatic approach to reduce the impact of these mea-
surement inhomogeneities would be to average the station 
records over several sites, perhaps the entire ground-based 
network (Logan et al., 1994, 1999a, 1999b; Terao and Logan, 
2007). This will effectively decrease the relative importance 
of systematic effects as many measurement artefacts across 
the network are of varying magnitude and occur randomly 
in time and space. However, some artefacts can be attrib-
uted to changes that occurred fairly simultaneously across 
parts of the network, in particular for the ozonesonde data 
records. For instance, the ten sites in the Canadian subnet-
work transitioned from BM to ECC ozonesonde models in 
the early 1980s and had a further series of simultaneous 
changes in the following decades (Tarasick et al., 2016), the 
five Japanese sites switched from the KC to the ECC ozon-
esonde around 2009 (Morris et al., 2013), and there are ad-
ditional changes in the NOAA and SHADOZ subnetworks 
(Witte et al., 2017; Sterling et al., 2018). Such simultane-
ous changes in the sonde network will not be fully aver-
aged out, so it is vital to have as many independent station 
records as possible. Measurement operations at lidar and 
MWR stations, on the other hand, are fairly independent, 
but the number of sites is much smaller than for the sonde 
network. This re-emphasises the need to sustain the cur-
rent number of stations in the ground-based networks.

3.1.2  Stability of limb data records relative to ground- 
	    based networks

Bottom-up calculations of the stability of ozone profile 
data records, that is from first principles or from the 
propagation of low level monitoring data through the 
retrieval chain, are contentious as they rarely lead to a 
realistic perception of the long-term performance of the 
measurement systems. Top-down approaches compare 
profile measurements to a reference data record and ul-
timately derive estimates of the stability (also called 
“drift”) relative to that reference (e.g., Nair et al., 2012; 
Rahpoe et al., 2015; Hubert et al., 2016). These estimates 
approximate absolute stability if the reference is suffi-
ciently stable. However, past validation and intercompar-
ison exercises have shown the challenges in establishing 
one (or more) ozone profile data records as a stable data 
record at the level required by profile trend assessments, 
which lies around 1 % per decade (GCOS, 2011).

Results from intercomparisons between different satellite 
records are described in Sections 3.1.3–3.1.5. In this sec-
tion we use the ground-based networks of ozonesonde, 
lidar, and microwave radiometer measurements as a 
reference to assess the decadal stability of single-sensor 
single-profile data (Level-2) and of gridded monthly zon-
al mean data (Level-3) from single sensors and for one 
multi-sensor data record. Only limb/occultation sound-
ers are considered here; ground-based comparisons for 
the SBUV nadir profilers have been reported by Krama-
rova et al. (2013a). The method follows that of Hubert 
et al. (2016) where regressions are made to the different 

time series of satellite and ground-based data, and the 
linear slope estimates, interpreted as satellite drift, are 
subsequently averaged over the network to obtain pseu-
do-global estimates. This reduces the impact of noise 
and inhomogeneities in the ground-based records on the 
satellite drift estimate (see Section 3.1.1). However, the 
uncertainties resulting from the linear fit do not fully 
take into account inhomogeneities across the network, so 
these are inflated using a χ2-scheme (see Section 4.1.2 in 
Hubert et al., 2016). Finally, the uncertainty of the net-
work-averaged satellite drift is obtained by propagating 
the χ2-corrected uncertainties of the linear term through 
the weighted average.

The first analysis investigates single satellite ozone pro-
files (i.e., Level-2) co-located in space (< 300 or 500 km) 
and time (< 1, 6, or 12 hours) to ground-based observa-
tions by ozonesonde, stratospheric lidar, and MWR net-
works. The co-location requirement reduces the number 
of compared measurements considerably in favour of a 
smaller mismatch uncertainty (Verhoelst et al., 2015) in 
the comparison time series. Figure 3.5 shows the vertical 
dependence of the drift relative to ozonesonde (bottom 
left), lidar (top left), and MWR (bottom right) for eleven 
limb/occultation sounder data records. Nine of these are 
part of a merged data record in this Report: SAGE II, HA-
LOE, OSIRIS, GOMOS, MIPAS, SCIAMACHY, ACE-
FTS, Aura MLS, and OMPS-LP (detailed version infor-
mation can be found in Table 3.1). Figure 3.6 shows the 
corresponding significance, with 2σ chosen as threshold 
for detection (i.e., 95 % confidence level). 

Longer time series are available here compared to Hubert 
et al. (2016), but revised or different satellite retrieval algo-
rithms were also considered for most instruments (except 
for SAGE II and HALOE, for which no new data were avail-
able), and one entirely new instrument record was added to 
the analysis (OMPS-LP). The main conclusions of Hubert et 
al. (2016) still hold and a fairly consistent picture emerges 
from the ozonesonde, lidar, and microwave radiometer re-
sults. These show that, generally, the limb/occultation data 
records are stable within 5 % per decade in the middle and 
upper stratosphere. For some records, for example SAGE II 
and Aura MLS, the constraints on stability are even better, 
with an upper bound on drift of less than 2 % per decade. 
No significant drift was found for MIPAS and ACE-FTS. 
SCIAMACHY data prior to August 2003 were removed 
from the analysis (see Section 3.1.3 and Sofieva et al., 2017). 
The negative drift around 35 km is now no longer statisti-
cally significant and decreased from 5 % to 3 % per decade. 
However, statistically significant deviations from zero 
were found for a few instruments in different regions of the 
atmosphere. In chronological order, HALOE data around 
25–30 km drift to lower ozone mixing ratios by 3–4 % per 
decade. Improvements in the pointing stability for OSIRIS 
have clearly reduced the positive drift from 8 % to 4 % per 
decade, but the latter result remains statistically signifi-
cant. And GOMOS occultation data drift to lower ozone 
values by 5 % per decade and more below around 25 km. 



24 Chapter 3: Challenges for trend studies

Figure 3.5:  Vertical profile of network-averaged satellite drift (Level-2) relative to co-located ground-based measurements 
by ozonesonde (bottom left), lidar (top left) and microwave radiometer (bottom right). Colours represent different limb/oc-
cultation data records (see legend).

Figure 3.6:  As Figure 3.5 but for the significance of the drift estimates. The 2σ detection threshold is indicated by grey 
vertical lines.
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The most striking result comes from OMPS-LP whose ver-
tical drift profile oscillates between negative values (-6 % 
per decade) at 27 km and positive values around 18 km 
(+7 % per decade) and 40 km (+9 % per decade). These os-
cillations are clear from comparisons to each of the three 
ground-based data records. Even though the OMPS time 
series is only five years long, the ample co-location statis-
tics allow for drift estimates with comparable precision to 
that of many other limb/occultation sounders. Instabilities 
in the altitude registration may be at the origin of the drift 
in the ozone record (Moy et al., 2017; Zawada et al., 2018; 
Kramarova et al., 2018).

We stress that statistically insignificant results should not 
be blindly interpreted as instances where no drift in the 
data is guaranteed. This is because the adopted method, 
the available comparison statistics, and the quality of 
the ground-based reference data only allow us to probe 

satellite drift to levels that are comparable to (or larger 
than) the geophysical ozone profile trend expected since 
the mid-1990s. The lower bound to detect drift is at best 
1 % per decade for just a few single-sensor records. Typi-
cally, detection thresholds are closer to 2–3 % per decade in 
the middle stratosphere and 3–4 % per decade elsewhere. 
These results do not necessarily apply to multi-sensor re-
cords since the very combination of different data sets will 
affect the resulting long-term stability. 

The second analysis considers space- and time-gridded 
limb/occultation data (i.e., Level-3) and gridded ozon-
esonde data. This approach takes advantage of the com-
plete time series of satellite and ground-based records 
but at the cost of leaving mismatch or sampling uncer-
tainty in the time series. However, the latter source of 
error becomes less important with increasing numbers 
of single profiles averaged by month in 5° latitude zones. 

Figure 3.7:  Drift estimates and 95 % confidence interval of monthly zonal mean satellite data relative to the ground-based 
ozonesonde network. Eight limb/occultation records and the merged SAGE-CCI-OMPS (central panel) are shown. Satellite 
records contributing to the merged record are indicated with a red asterisk.
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The time series analysis and derivation of drift follows the 
method described in Hubert et al. (2016), but the input 
data are different. Essentially, we consider the anomalies of 
monthly zonal mean data relative to its seasonal cycle in a 
reference period. Ozonesonde data are gridded following 
the procedure outlined in Section 2.1.2.1 with slightly dif-
ferent selection criteria and reference period (2004–2011). 
Comparison time series are constructed as the absolute dif-
ference of the gridded satellite anomaly minus the gridded 
ozonesonde anomaly, with both terms expressed in per-
cent. As before, drift is regressed for each latitude band that 
contains a ground-based record and then averaged over 
the entire latitudinal range of the sonde network. The cen-
tral network-averaged drift estimates and 95 % confidence 
intervals are shown in Figure 3.7. These Level-3 results 
generally confirm what was observed in Level-2 results, 
but it appears that the precision of the Level-3 drift esti-
mates is slightly better (e.g., for ACE-FTS). The availability 
of the entire time series, instead of a subset of co-located 
measurements, contributes to this improvement, but the 
smaller impact of reducing station-to-station inhomogene-
ities helps as well. Indeed, the latter are mostly avoided by 
constructing the reference as an average of deseasonalised 
anomaly station data, where the seasonal cycle is derived 
individually from each sonde record. If ozone profiles at 
a certain site are, on average, 5 % higher, then this multi-
plicative bias will be present in both the monthly and sea-
sonal cycle data, and, therefore not in the deseasonalised 
monthly relative anomaly data. This step brings the average 
level of the anomaly time series of all stations to zero over 
the reference period, which avoids artificial steps in the sta-
tion-combined sonde time series where a measurement gap 
starts or ends for a particular station. A second benefit of 
this deseasonalisation procedure is that it reduces the vari-
ance in the comparison time series caused by differences in 
the seasonal cycle of satellite and sonde data.

The central panel of Figure 3.7 also shows drift results 
for the merged SAGE-CCI-OMPS data record described 
in Section 2.2.4.2 and by Sofieva et al. (2017). Non-signifi-
cant, positive values of 0.8 % per decade are found between 
25–30 km. The negative values of ~1.5 % per decade below 
24 km are statistically significant, but we advise great care 
in interpreting significance in the lower part of the strato-
sphere. The variability of the ozone field, the lower ozone 
concentrations and the fading sensitivity of limb sounders 
make it very difficult to obtain precise uncertainty esti-
mates in this part of the atmosphere. Comprehensive stud-
ies are therefore needed to further quantify these errors. 
For now, the result of lower stratospheric drift is inconclu-
sive. Future work will consider other merged profile data 
records and extend the analysis to the lidar network data.

3.1.3  Intercomparisons of limb satellite measurements

In the context of data validation studies, intercomparisons 
of satellite measurements are typically performed using 
profile data that are co-located in space and in time. Many 

such analyses have been performed in recent years for limb 
sounders (e.g., Adams et al., 2013, 2014; Laeng et al., 2014; 
Kyrölä et al., 2013) including analyses of relative drifts 
(Rahpoe et al., 2015). For the creation of merged data sets, 
on the other hand, the intercomparison of monthly zonal 
mean data is more relevant since the combination of differ-
ent satellite records is usually done at the level of monthly 
zonal mean data or at the level of monthly deseasonalised 
anomalies. Such studies have been performed recently by 
the groups that created merged data sets from limb instru-
ments (e.g., Bourassa et al., 2014; Froidevaux et al., 2015; 
Davis et al., 2016; Sofieva et al., 2017). Results of intercom-
parison studies for the SBUV nadir profile sounders are 
reported in Section 3.1.4.

During the preparation of the merged SAGE-CCI-OMPS 
data set of ozone profiles, the deseasonalised anomalies 
of the individual instruments (SAGE II, GOMOS, MI-
PAS, SCIAMACHY, OSIRIS, ACE-FTS, and OMPS-LP 
USask 2D) have been extensively intercompared by com-
puting and visualising the time series of the difference 
between the single-sensor anomalies and the median 
anomaly of the seven data records. This method is sen-
sitive to detecting anomalous features (i.e., large or in-
creasing deviations from the median) in the time series 
of single sensors.

In particular, it was found that the deseasonalised anom-
alies for SCIAMACHY are larger at the beginning of the 
mission, for nearly all latitude bands and at many altitude 
levels (Figure S3.7 in the supplement). Similarly, OMPS 
anomalies are lower in the first three months of the mis-
sion (Figure S3.8 in the supplement). Note that the sam-
pling of the OMPS-LP was significantly coarser in the 
first three months of the mission. The data from these 
early periods of SCIAMACHY and OMPS operation are 
therefore not included in the merged SAGE-CCI-OMPS 
data set. After the data selection, the anomalies from in-
dividual instruments are found to be in good agreement 
with each other. This is illustrated in Figure 3.8, which 
shows the deviations of deseasonalised anomalies of each 
instrument relative to the median anomaly of all limb re-
cords for 30°S–40°S. Deviations from the median anom-
alies are small, less than 5 % for the majority of data, and 
do not have statistically significant drifts with respect to 
the median anomaly (see also illustrations in the Supple-
ment of Sofieva et al., 2017).

3.1.4  Stability of limb data records relative to ground- 
	    based networks

The two nadir instrument-based merged ozone data sets 
used in this Report (SBUV MOD and SBUV COH; see 
Chapter 2, Sections 2.2.1.1 and 2.2.1.2) are constructed 
from the same initial set of SBUV satellite records. The 
SBUV series of instruments have similar design and data 
are retrieved using the same Version 8.6 algorithm (Mc-
Peters et al., 2013). Furthermore, as part of the Version 8.6 
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processing, SBUV measurements from individual instru-
ments were inter-calibrated at the radiance level based on 
comparisons during instrument overlap periods (DeLand 
et al., 2012). However, despite the instrument similarity 
and common retrieval algorithm, each instrument experi-
enced unique operational conditions (e.g., instrument deg-
radation or specific on-orbit problems) and orbital char-
acteristics (including measurement time of day), which 
contribute to differences among the individual records. 
Therefore, differences in how the data are selected and 
merged in the combined records can lead to differences 
between the merged SBUV products.

In general, the SBUV ozone profile measurements agree 
to within ±5 % when compared to external satellite and 
ground-based instruments, with similar or better agree-
ment among the SBUV instruments themselves (Kra-
marova et al., 2013a; Frith et al., 2017; Wild et al., 2019). 
However, lower quality data from NOAA-9, NOAA-11 de-
scending, and NOAA-14 lead to larger uncertainties (10–
15 %) in the mid-1990s and complicate efforts to establish 
a long-term calibration over the full record (from 1980s to 
2000s) (DeLand et al., 2012; Kramarova et al., 2013a; Tum-
mon et al., 2015; Ball et al., 2017). The SBUV MOD merg-
ing approach is to average all available data after removing 
portions of individual records found to be inferior (e.g., 
data from drifting orbits, NOAA-9 SBUV/2). This approach 
relies on the average of multiple measurements to mitigate 

the effects of small offsets and drifts in individual data sets 
rather than attempting to choose a single record as a ref-
erence calibration. The SBUV COH merging approach is 
to identify a representative satellite for each time period, 
thus preserving knowledge of orbital characteristics for 
each measurement period. Additionally, data after 2001 are 
adjusted directly to NOAA-18 in SBUV COH, removing 
small inter-satellite differences. Each approach has advan-
tages and disadvantages. SBUV MOD is sensitive to suc-
cessively increasing or decreasing biases in the instrument 
series that might alias into a trend. SBUV COH is sensitive 
to drifts in the reference instruments that might be propa-
gated to other periods in the record. This was the case in 
the previous version of SBUV COH used in the SI2N report 
(Tummon et al., 2015). The potential for unphysical drifts is 
greatly reduced in the current version of the SBUV COH 
data set, which limits inter-instrument corrections to peri-
ods where long overlaps of high quality data exist.

Frith et al. (2014; 2017) analysed the differences in month-
ly zonal mean time series from the individual SBUV data 
sets during periods of overlap in an effort to character-
ise the uncertainty associated with the merging process. 
Given the numerous instruments and overlaps, many 
reasonable approaches could be chosen based on differ-
ent selections of data (e.g., instrument and time period) 
and different means of determining inter-satellite adjust-
ments (e.g., mean offset, offset and drift, no adjustments). 

Figure 3.8:  Deviations (in %, colour) of deseasonalised anomalies for GOMOS, MIPAS, SCIAMACHY, OSIRIS, ACE-FTS, OMPS, 
and SAGE II (indicated in the panels) from the median deseasonalised anomalies computed using all data sets. Latitude band 
is 30°S–40°S. From Sofieva et al. (2017).
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The authors used the distribution of measured offsets and 
drifts between SBUV instruments during times of overlap 
to construct 10000 MC simulations of potential instrument 
error (see Frith et al., 2017, Figure 7). In essence the collec-
tion of SBUV inter-instrument offsets and drifts were used to 
define an SBUV-system uncertainty, in an effort to account 
for both relative and absolute uncertainties. The MC simu-
lations were structured to account for the larger observed 
uncertainty of instruments operating in the 1990s and time 
dependence of the absolute calibration procedures used 
within the SBUV retrieval algorithm (DeLand et al., 2012). 
Previous studies using MC simulations suggest that the long-
term drift uncertainty in a record constructed from multiple 
data sets is less than that for a single instrument because 
the introduction of new data “resets” the drift (Stolarski and 
Frith, 2006; Weber et al., 2016), but adding too many data 
sets increases uncertainty as a result of multiple potential 
discontinuities in the record (Weber et al., 2016). By apply-
ing the multiple regression model to the MC simulations we 
can test the degree to which potential time-dependent un-
certainties alias into individual regression terms and assess 
the additional uncertainty due to the merging process itself. 
The 2-sigma variation of terms from a regression model fit 
to the MC simulations defines the “merging uncertainty” for 
each term.

Frith et al. (2017) also compared regression analysis results 
between the SBUV MOD and SBUV COH data sets, treating 
each as equally valid approaches to merging the data record 
from the SBUV instrument suite. The authors report differ-
ences in the post-2000 trend with SBUV COH trends being 
generally more positive than SBUV MOD at altitudes above 
the 5 hPa level and less positive below 5 hPa, consistent with 
the results of this Report (e.g., Figures 5.1 and 5.2). When only 
statistical error is included the results are statistically signifi-
cantly different from each other, but when the merging uncer-
tainty is taken into account the trend error bars overlap (see 
Figure 3.9). Direct comparisons between both data sets show 
the differences below 5 hPa are largely a result of a positive 
bias in NOAA-19 at the end of the record, which is adjusted 
in SBUV COH but not in SBUV MOD (Figures 2 and 10 of 
Frith et al., 2017). Above 5 hPa, a small positive drift in NOAA-
18, used as the reference in SBUV COH, leads to a more posi-
tive trend relative to SBUV MOD (Figures 3 and 10 of Frith 
et al., 2017). Figure 3.10 shows the annual drift (percent per 
year) relative to Aura MLS v4 for SBUV MOD and SBUV 
COH computed from October 2004 to December 2016. As 
described above, comparisons using Aura MLS as a transfer 
standard show SBUV COH with a more positive drift above 
5 hPa and SBUV MOD with a more positive drift below 5 hPa.

3.1.5  The BASIC composite and its use for intercomparisons of  
	    merged data records

All merged (hereafter also called composite) data sets suf-
fer from artefacts and/or drifts inherent to the instrument 
data used in their construction, or from absolute offsets 
and discontinuities when instrument data are combined. 

As has been extensively discussed in previous sections, the 
presence of these artefacts can lead to inaccurate and/or 
more uncertain trend estimates. The BAyeSian Integrated 
and Consolidated (BASIC) composite is a set of algorithms 
that, using only the data available, collectively merges mul-
tiple ozone composites into one. This Bayesian approach 
provides a principled way to incorporate prior information 
about data artefacts (see below), with a Gaussian mixture 
likelihood that together allows for a robust estimate of true 
ozone given both the information available and the design 
of the statistical model (see Ball et al. (2017) for details). 
The approach is designed to take advantage of the common 
variability present in all the ozone composite data sets to 
inform, within a probabilistic framework, the most likely 
ozone time series. Since each composite contains both 
the real ozone time series and additional composite- and 
instrument-specific artefacts such as drifts, spikes and dis-
continuities, the availability of multiple co-temporal and 
co-spatial time series allows BASIC to account for many 
of these issues that might remain in any individual ozone 
composite (i.e., sampling differences, satellite drifts, biases 
between data sets merged in the composites, and resolu-
tion differences between instruments within composites).

The BASIC approach is thoroughly documented in Ball 
et al. (2017), but we brief ly describe the steps here. First, 
errors provided with each composite are formed using 
different approaches and statistics and therefore cannot 
be directly compared. Thus for BASIC, the uncertain-
ties for each composite time series are derived indepen-
dently using singular value decomposition (SVD). The 
underlying assumption for using SVD is that each com-
posite contains the true ozone time series and a set of 
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Figure 3.9:  ILT trend proxy fit to 35S–50S monthly zonal 
mean SBUV MOD (red) and SBUV COH (blue, referred to as 
“NOAA” in Figure) records over the 2001–2015 time period. 
The shaded regions indicate the 2-sigma statistical uncer-
tainty estimated from the unexplained variability in the 
multiple regression analysis. The dotted error bars show the 
total trend uncertainty when the SBUV MOD 2-sigma merg-
ing uncertainty is included. The uncertainties are combined 
using the root sum of squares of each error term. For com-
parison, the estimated MOD uncertainty is also added to the 
SBUV COH error bars. From Frith et al. (2017).
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instrument and composite-construction artefacts that 
should be unique to each composite. Through SVD, 
the common modes of variability are identified, and if 
behaviour deviates from these then this is assigned as 
an uncertainty; ignoring the first SVD mode as the one 
common to all composites, the higher modes that de-
scribe deviations from the first mode are used to form 
an uncertainty: (see discussion in Section 3.1.1 about the 
benefits of multiple datasets to identify and assign the 
source data causing a discrepancy). Use of SVD does 
not provide true uncertainties, but assigns an uncer-
tainty based on common behaviour where a deviation 

of a composite, or group of composites, from the com-
mon behaviour leads to an estimated larger uncertainty. 
Indeed, enhanced uncertainties often correspond to 
known problems in specific composites or underly-
ing instrument data, so Ball et al. (2017) consider this 
a reasonable assignment of belief, or uncertainty, in 
the accuracy of the composites. Often the spread in the 
ozone composites is well within the uncertainties pro-
vided with each composite. Second, any prior informa-
tion about artefacts or drifts in the individual instru-
ment or composite data are incorporated by inf lating 
the SVD-estimated uncertainties; such information can 
be at times when instruments are known to change in 
each composite (leading to step-function changes in the 
time series), or when orbital drifts are known to induce 
an artificial trend in the time series (e.g., some SBUV 
instruments in the later 1990s; see Section 3.1.4). We 
note that the choice of using an inf lation factor of two 
is subjective, but we see little difference in the impact 
of choosing larger values (see Ball et al., 2017). Third, 
we then form a Gaussian mixture likelihood for each 
month that allows for the probability distribution of 
ozone to form multiple peaks. As such, combining in-
formation about the most likely state f the ozone in the 
current month with information available in the pre-
ceding and following months leads to a posterior distri-
bution that provides the most likely ozone time series 
given the information available. To form the posterior 
estimate of the monthly ozone, we must sample what is 
a high-dimensional problem using an efficient method 
such as Markov chain Monte Carlo (MCMC), which we 
do using Hamiltonian Monte Carlo (HMC; Neal, 1993; 
Carpenter et al., 2016).
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Figure 3.10:  Drift (in % per year) of zonally averaged pro-
file data from SBUV MOD (turquoise) and SBUV COH (red) 
relative to Aura MLS v4 for 50°S–35°S (left), 20°S–20°N (mid-
dle) and 35°N–50°N (right).

Figure 3.11:  Latitude weighted mean 1-sigma errors (%) estimated from the application of SVD for three number density 
composites (SAGE-MIPAS-OMPS (SMO), SAGE-CCI-OMPS (CCI), and SAGE-OSIRIS-OMPS (SOO)) and the 1-sigma uncertainty 
in the BASICNDEN composite (dotted black line) derived from these, and for four VMR-based composites (SWOOSH, GOZCARDS, 
SBUV MOD, and SBUV COH) and the BASICVMR composite (solid black line). Note that number density is on altitude, and VMR 
on pressure level, so comparing between the VMR and number density data sets is only indicative.
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Examples of the SVD-estimated uncer-
tainties are shown in Figure 3.11. These 
uncertainties are typically at least two 
times smaller than those provided with 
composites (where available), which 
might suggest that provided uncer-
tainties are conservative given that the 
SVD-uncertainties represent a devia-
tion of the estimated mean uncertainty 
from the group. Here we have separately 
estimated uncertainties in four VMR-
based composites and three number 
density-based composites; the uncer-
tainties are not comparable between the 
sets of composites, only within. Never-
theless, it is interesting to compare all 
seven in the same sub-figures. For ex-
ample, in the VMR-based composites 
it is clear that the uncertainties in the 
20°S–20°N region at 10 hPa and 46 hPa 
are larger between 1994 and 2001; at 
10 hPa this is mainly due to the SBUV 
MOD and SBUV COH composites and 
reflects a period of known drift in the 
SBUV-based composites (see Section 
3.1.4). The number-density uncertain-
ties are typically lower than the VMR-
composites, but this reflects the fact 
that the number density composites 
are based on very similar underlying 
data with similar vertical resolutions. 
The VMR-based uncertainties integrate 
information from the lower resolution 
SBUV-based composites, with those at 
a similar resolution to the number den-
sity composites and, as such, the un-
certainties are larger to accommodate 
the higher uncertainty in the absolute 
level. Nevertheless, the uncertainties 
in BASICVMR (based on the four VMR-
composites: GOZCARDS, SWOOSH, 
SBUV MOD, and SBUV COH; solid, 
black line) and BASICNDEN (based on 
the three number density composites: 
SAGE-CCI-OMPS, SAGE-OSIRIS-
OMPS, and SAGE-MIPAS-OMPS; dot-
ted, black) in Figure 3.11 are similar. 
Note that sometimes the BASICNDEN 
uncertainty becomes temporarily large, 
which occurs because of missing data 
in all the underlying composites; this 
can also be seen during the Mt. Pina-
tubo eruption, particularly over the 
Equator at 46 hPa. What appears to be 
common to all regions presented is that 
uncertainties prior to 2005 are larger 
than after this time, especially between 
1995 and 2000, which may have a sig-
nificant effect on the estimated decadal 

Figure 3.12:  Selected pressure levels in three latitude bands for the four VMR 
composites and the BASICVMR composite. Each pair of plots show the relative 
(%) deseasonalised time series bias-shifted to agree with SWOOSH for the 
July 2005 to December 2013 period (upper half) and anomalies relative to the 
BASICVMR composite (lower half). The 2-sigma uncertainty on the BASICVMR is 
shown with grey shading.

Figure 3.13:  As for Figure 3.12 but for the number density composites and 
BASICNDEN derived from these.
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trend (see below) especially since this larger uncertainty 
results directly from different offsets in the composites. 
Another interesting feature, apparent in many regions, is 
that the uncertainties begin to increase again after 2014, 
which suggests composites are diverging again. This di-
vergence may lead to an inflation in uncertainties in trend 
estimates even though more data are being accumulated. 
Understanding why data are diverging again and which 
are most likely correct will be an important issue to follow 
up in future work.

Figure 3.12 presents the four VMR-based composites; (up-
per) relative to the mean of July 2005 to December 2012 
and (lower) relative to BASICVMR for the same regions 
shown in Figure 3.11. Similarly, Figure 3.13 provides 
the same for the three number-density composites and  
BASICNDEN. Panels in Figures 3.12 and 3.13 represent 
approximately the same pressure/altitude region in the 
stratosphere, and the similar short- and long-term vari-
ability reflects this. As discussed above, the relative dif-
ferences between composites (lower panels) are typically 
larger for the VMR composites than the number density 
and are larger at higher pressures (lower altitudes), which 
reflects the decreasing vertical resolution in SBUV. The 
number density composites contain mostly similar data, 
so while there are clearly periods of drift and rapid diver-
gence (Figure 3.12) between the SWOOSH/GOZCARDS 
composites (constructed using similar instruments) and 
the SBUV-composites (especially for 1994–2004 and prior 
to 1990), the offsets between composites are clearer in the 
number density composites (lower panels of Figure 3.13) 

because the underlying data are usually the same (SAGE 
II until 2005, OMPS from 2011). So, if drifts exist in these 
number density-based data they will not become apparent, 
and differences will mainly reflect the differences in com-
posite merging or data-screening prior to the merge. This 
is especially apparent in the SAGE-MIPAS-OMPS data set 
where, at 22 km in the equatorial region, this data set is 
offset by 4 % from the other two number density compos-
ites, and the BASICNDEN composite rejects this as an un-
likely level of ozone prior to 2004. This is a good example 
of how the BASIC method goes beyond a simple composite 
average. Offsets are seen in other panels mainly associated 
with the SAGE-MIPAS-OMPS composite, and it is these 
offsets that likely contribute to the larger positive post-
2000 decadal trends in SAGE II-MIPAS-OMPS presented 
in the tropical lower stratosphere presented in Steinbrecht 
et al. (2017) and in Section 5.1 of this Report (Figure 5.2). 
Once again, the divergence between composites after 2014 
appears in several panels in Figures 3.12 and 3.13.

We note that the BASIC composites can only estimate 
ozone as accurately as the information available within 
the considered composites can permit, that is if all the data 
are wrong in the same way, at the same time, BASIC can-
not estimate the true state of ozone at that time. Therefore, 
in principle, the more composites that can be incorporat-
ed in the analysis, the more useful and robust the result 
should be. However, the BASICVMR and BASICNDEN com-
posites show different variability on monthly and approxi-
mately two-yearly timescales because they use different 
data-types (sources, resolution, vertical grid, units, etc.). 

Figure 3.14:  Two levels from Figures 3.12 and 3.13 overlaying the VMR and number density time series for comparative 
purposes. Each pair of plots show the relative (%) change compared to the July 2005 – December 2012 mean (a & c) and the 
change relative to BASICVMR (b & d). Note that while number density and VMR time series shown correspond to approximately 
the same region in the atmosphere, they are not exact and should be considered only indicative.
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In Figure 3.14, we make this clear by showing 
all seven composites and both BASIC compos-
ites from two of the panels presented in the 
preceding figures (35°N–60°N at 2.2 hPa/42 km 
and 20°S–20°N at 46 hPa/22 km); the lower pan-
els are all relative to the BASICVMR composite, 
and the difference between BASICVMR and BA-
SICNDEN is clear (solid and dotted black lines, re-
spectively). There is some sensitivity to the exact 
altitude/pressure level compared in these plots, 
but choosing an altitude above or below the ones 
presented leads to broadly similar results. It is 
important to note that prior to 2004, SAGE II 
data are in all composites except SBUV COH 
and SBUV MOD. Therefore, applying the BASIC 
method to all seven composites treated indepen-
dently would lead to a bias in the composites 
containing SAGE II, a concern raised by Harris 
et al. (2015). It would also require a transfer func-
tion through a model (e.g., European Center for 
Medium-Range Weather Forecast Re-Analysis 
(ERA-Interim)) to put all the composites on the 
same coordinate system and therefore applying 
such a coordinate change introduces additional 
uncertainties (e.g., due to unknown uncertain-
ties in the parameters of the reanalysis models) 
not considered explicitly in the uncertainty esti-
mate. As such, because BASICNDEN is based only 
on the SAGE II composites, and the BASICVMR 
equally between those with and without SAGE 
II data, it is unsurprising that the two BASIC 
composites show differences prior to 2004, with 
BASICNDEN lining up closer to the GOZCARDS 
and SWOOSH composites that contain SAGE II.

A more thorough and detailed analysis of the 
BASICVMR composite presented in Ball et al. 
(2017, 2018), along with a trend analysis, re-
veals that after accounting for many of the ar-
tefacts and drifts in the data, differences in post-1997 
ozone change profile shapes that have been presented in 
previous studies (e.g., Tummon et al., 2015) disappear, 
and the trends in both hemispheres look similar, suggest-
ing that artefacts are indeed important in biasing trend 
estimates. The enhanced uncertainty between 1995 and 
2005, also presented here, shows that trends may also be 
sensitive to the inflection date used in piecewise linear 
trend (PWLT) multiple linear regression (MLR, see Sec-
tion 4.3.4). Additionally, Ball et al. (2017) found that the 
use of MLR led to a large, post-1997 negative trend in the 
tropics (20°S–20°N) peaking at 7 hPa (also reported else-
where), which disappeared in BASIC when applying dy-
namical linear modelling (DLM) to estimate the change.

The use of the BASIC method and composites, and compar-
isons similar to the limited set presented here, should aid 
composite teams in understanding artefacts in the compos-
ites and improving the merging procedure. Revealing arte-
facts allows for evidence of the reliability of composites to 

inform our understanding of why composites show diverg-
ing decadal trend estimates and to make informed decisions 
about how these artefacts might be addressed in the future. 
Ultimately, a more advanced approach is to merge the in-
strument data underlying each composite only once, using a 
methodology adapted from that developed in BASIC, which 
will lead to a single composite that provides the best esti-
mate of ozone given all the satellite data available.

3.2  Sampling bias and uncertainty correction  
	  characterisation

WMO (2014) identified three factors that were not account-
ed for in trend analyses with a potential major impact on 
resulting trends: Diurnal variability of ozone, biases be-
tween data sets, and long-term drifts between data sets. 
However, there is an additional complication that is intri-
cately tied to these three factors in trend analyses, namely 
the non-uniform temporal, spatial, and diurnal sampling 

Figure 3.15:  Latitude and time of year of all events for SAGE II, HALOE, 
and ACE-FTS separated by local event type (blue for sunrise and red for 
sunset) plotted every 3 years (to reduce clutter) illustrating the drifting 
sampling patterns over time. Sampling patterns can systematically shift 
several weeks over a few years for instruments like SAGE II (in its later years) 
or HALOE (continuously) while ACE-FTS is essentially constant. Time of year 
is expressed as the modulus of the year fraction.
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of the different instruments used for those 
analyses. This non-uniform sampling can 
have a detrimental impact not only on the 
regression techniques used to derive long-
term trends in ozone but also on other 
analyses performed to determine diurnal 
variability or the magnitude of potential 
biases and drifts between data sets.

In order to perform regression analyses to 
determine long-term ozone trends, data 
sets are first typically reduced to monthly 
zonal mean (MZM) values that are uti-
lised as though they are representative of 
the centre of the month and the centre 
of the latitude bin. While this assump-
tion is reasonable for highly sampled data 
sets (e.g., nadir and limb scatter measure-
ments) it generally breaks down when ap-
plied to sparsely sampled data sets (e.g., 
ground or occultation measurements), 
though even highly sampled data sets are 
susceptible to changes in the local solar 
time of observations that can be problem-
atic in the presence of diurnal variability 
(Bhartia et al., 2013, Frith et al., 2017). This 
is not a new concept; Toohey et al. (2013) and Sofieva et al. 
(2014) both investigated non-uniform temporal sampling 
as an added source of noise and uncertainty that could be 
characterised and included in trend analyses. However, 
orbital drift can lead to a systematic drift in sampling pat-
terns over time, making the standard practice of using 
deseasonalised anomalies for trend analysis insufficient 
to remove potential sampling biases. Millán et al. (2016) 
investigated the impacts of non-uniform sampling biases 
on resulting trends from different instruments by repeat-
ing a “representative year” of sampling for each data set 
and running a model through it over ~30 years to analyse 
the effect on trends. While illustrative, this did not ac-
count for the actual sampling bias as it changed from year 
to year for those instruments. As such, it is still necessary 
to consider the non-uniform sampling of different satellite 
data sets and how representative the derived MZM ozone 
values are of the actual month and zonal band. Data from 
ground-based observations can exhibit similar problems 
and have the additional complication of making measure-
ments from only a single latitude and longitude such that 
one must also consider their representativeness of the zon-
al band itself.

3.2.1  Sampling bias for occultation instruments estimated 
	    using simultaneous temporal and spatial (STS) analysis 

Occultation instruments are classic examples of non-
uniform temporal sampling drift. Figure 3.15 illustrates 
the drifting sampling patterns of three occultation in-
struments (i.e., SAGE II, HALOE and ACE-FTS) over 
their mission lifetimes. SAGE II and HALOE exhibit a 

systematic drift in sampling towards earlier times of year 
at every latitude over their mission lifetimes. ACE-FTS 
has a much slower drift but has a non-uniform distribu-
tion of sunrise and sunset measurements as a function 
of time of year for every latitude, making the separation 
of the seasonal cycle and diurnal variability impossible 
when computing monthly zonal means. In addition to 
non-uniform seasonal sampling, occultation instru-
ments can also exhibit non-uniform diurnal sampling 
over the mission lifetime. SAGE II is an extreme case of 
this, where instrument anomalies caused long periods 
of sunrise or sunset dominated sampling (Figure 3.16). 
In the presence of diurnal variability (e.g., in the upper 
stratosphere where trends are of the largest magnitude) 
these diurnal sampling biases can detrimentally impact 
trend analyses.

Damadeo et al. (2018) discusses the non-uniform tempo-
ral, spatial, and diurnal sampling of occultation instru-
ments in great detail and how the use of MZM values can 
create sampling-induced biases that alias into long-dura-
tion variability (i.e., solar cycle and/or long-term trends). 
Ultimately where (i.e., at what latitudes and altitudes) the 
sampling biases alias into trend and/or solar cycle results 
is somewhat “random” as it is dependent upon the chance 
combination of drifting sampling patterns, spatially-
varying seasonal gradients, and frequency of interannual 
variability. That work also utilises a simultaneous tempo-
ral and spatial (STS) regression technique that properly 
accounts for the non-uniform sampling patterns of occul-
tation instruments (Damadeo et al., 2014) and applies it to 
the SAGE II, HALOE, and ACE-FTS data sets simultane-
ously to derive trend results unaffected by sampling biases. 

Figure 3.16:  The difference in the total number of sunset (SS) and sunrise (SR) 
events in each month and 10 degree latitude bin from SAGE II. In addition to the 
rapid oscillation between SR and SS dominated months, instrument anomalies 
resulted in large periods and locations of SR/SS dominated sampling (bottom 
panel of Figure 8 of Damadeo et al., 2018).



34 Chapter 3: Challenges for trend studies

Lastly, in an effort to quantify the impact of non-uniform 
sampling on derived trends when using MZM method-
ology (i.e., regressing to MZM values separately for each 
latitude bin), Damadeo et al. (2018) uses the results of 
the STS analysis to create diurnally as well as seasonally 
corrected versions of these data sets for use with MZM 
analysis. Each version (i.e., raw, diurnally corrected, and 
diurnally plus seasonally corrected) is then run through 
an MZM regression model to derive long-term ozone 
trends. Figure 3.17 illustrates the difference in trend re-
sults derived between the different “corrected” data sets. 
The diurnal correction exhibits the larg-
est influence, showing differences in trend 
results of about 1–2 % per decade in the 
upper stratosphere at mid-latitudes (i.e., 
where typical positive trends are largest). 
The seasonal correction has the largest in-
fluence at high latitudes and at the tropical 
middle stratosphere although at a reduced 
magnitude of about 0.5–1 % per decade. 

Since typically derived “recovery” trends 
are only about 2–3 % per decade, the in-
fluence of non-uniform sampling patterns 
on derived trends can be significant and is 
strongly dependent upon what data sets are 
used and how they are incorporated into the 
analysis.

3.2.2  Station means versus zonal means

This section focuses on the question of whether month-
ly averaged ozone partial columns in the middle and 
upper stratosphere at single lidar stations are represen-
tative of the monthly zonal mean. The motivation for 
this dedicated analysis arises from the wide use of zonal 
means in calculating trends and in studies related to the 
interannual ozone variability in cross sections of the 
middle and upper stratosphere. 

Figure 3.17:  Long-term trends derived from both the MZM and the STS regressions during the potential recovery period. Re-
sults are also shown when using the STS regression results to create a diurnally corrected (DCorr) and a diurnally & seasonally 
corrected (DSCorr) data set for use with the MZM regression. The diurnal correction has the greatest influence on the upper 
stratosphere while the seasonal correction has the greatest influence at higher latitudes. Stippling denotes areas where the 
trend results are not significant at the 2σ level. Contour lines are plotted at 2 % intervals. (Figure 11 from Damadeo et al., 2018).
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Figure 3.18:  Correlation between monthly mean SBUV overpass data at 
five lidar stations versus the corresponding 5° monthly zonal mean SBUV 
data of each site.
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We performed a comparison of lidar station overpass SBUV 
MOD data and zonal mean SBUV MOD data. A compari-
son of zonal mean SBUV MOD data to the station mean 
data by the lidar instrument itself would introduce uncer-
tainty due to the use of different instruments. Five lidar sta-
tions with long-term ozone profile data records were cho-
sen: Hohenpeissenberg (47.8°N, 11.0°E), Haute Provence 
(43.9°N, 5.7°E), and Table Mountain (34.4°N, 117.7°W) in 
the northern mid-latitudes; MLO (19.5°N, 155.6°W) in the 
tropics; and Lauder (45.0°S, 169.7°E) in the southern mid-
latitudes. Furthermore, the analysis is confined to SBUV 
layers 8 (40–25 hPa) up to 14 (2.5–1.6 hPa), because the ac-
curacy of the lidar data is limited in the upper stratosphere 
and that of the SBUV data is limited below the 30 hPa level.

Figure 3.18 shows that SBUV overpass data at the five se-
lected lidar locations are highly correlated with the respec-
tive SBUV zonal mean data. Natural oscillations (seasonal, 
QBO, etc.) were removed prior to computing the correlation 
but not when computing the long-term trends. Correla-
tion coefficients increase with altitude from about 0.75 to 
0.9 for all sites and these values are statistically significant. 
This finding is of particular importance, especially when 
it comes to the calculation of long-term trends. It suggests 
that the variability at a single point in the middle and up-
per stratosphere is comparable to that found in the 5-degree 
zonal mean data encompassing the lidar station location. 

This implies that higher frequency spatial variability has 
little impact at these altitudes, making the derived trends 
from station data and satellite zonal mean data more di-
rectly comparable.

Although the level of agreement between ozone variability 
at single stations and from zonal means encompassing  the 
stations has yet to be quantified (WMO, 2014; Frith et al., 
2017; Zerefos et al., 2018), Figure 3.19 shows an example of 
the spatial distribution of the correlation coefficients be-
tween SBUV overpass data at Hohenpeissenberg and at 633 
station locations around the globe. The SBUV MOD data 
at station locations were downloaded from https://acd-ext.
gsfc.nasa.gov/anonftp/toms/sbuv/MERGED. The “zonal-
ity representativeness” is obvious in the chromatic scale of 
Figure 3.19 as well as the finding that as we move higher 
in altitude, higher correlations are found even at distances 
exceeding 1000 km. The results are similar when the calcu-
lations are repeated between overpasses over the other four 
available lidar stations and all 633 locations of SBUV over-
passes (not shown here, see Zerefos et al, 2018). Overall, sta-
tions correlate well and are representative over a fairly wide 
range of longitudes and latitudes. These findings are also 
true for MLO but, as mentioned in Section 5.4, MLO Um-
kehr cannot represent the tropical belt between 20°S and 
20°N. Instead, according to these findings, MLO represents 
the northern zone well between 15–20°N. 

Figure 3.19:  Correlation between the time series, previously deseasonalised and known variability removed, of layered 
ozone monthly SBUV MOD overpasses at the Hohenpeissenberg station and the SBUV MOD overpasses at various other loca-
tions around the globe. Four layers are shown in the panels. The black star indicates the location of Hohenpeissenberg.

https://acd-ext.gsfc.nasa.gov/anonftp/toms/sbuv/MERGED/
https://acd-ext.gsfc.nasa.gov/anonftp/toms/sbuv/MERGED/
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3.3  Summary

Any measurement process unavoidably brings about un-
certainties, which ultimately propagate into ozone pro-
file trend uncertainties. Some sources of uncertainty can 
be directly estimated by the regression algorithm from 
the time series, others have to be quantified by indepen-
dent means. For instance, a constant drift in ozone levels 
over time can be, to a large degree, collinear with the 
trend proxy term in the regression. It will therefore be 
absorbed in the trend estimate but not in the trend un-
certainty estimate. 

In this particular case, as in others, there is a clear ben-
efit of having several complementary contemporary data 
records since none of the individual satellite or ground-
based records provide superior stability over the entire 
spatio-temporal domain of interest. Intercomparisons of 
ozone time series of various kinds (single profile mea-
surements, local and monthly zonal means or monthly 
deseasonalised anomalies, single-sensor or merged re-
cords) have revealed measurement-related artefacts, 
such as drifts, discontinuities, and spikes. For some arte-
facts the evidence was comprehensive enough to exclude 
(part of) the data record from further analyses. Other 
issues were not, or could not be, removed, but they have 
been taken into consideration in the interpretation of 
the trend results in Chapter 5. These include the drift in 
a few satellite data records in part of the stratosphere, 
most notably for OSIRIS and OMPS-LP. Improvements 
are required, especially for the OMPS-LP data record as 
it drifts by 5–10 % per decade, most likely as a result of 
unstable altitude registration. Most ground-based sta-
tion records exhibit anomalous behaviour during some 
periods in time. Although the anomalies are broadly 
consistent with reported systematic errors of 5–10 %, 
they are episodic rather than systematic in nature. De-
spite these residual artefacts, the agreement between ob-
servational records has generally been improved when 
compared to the consistency found for earlier data ver-
sions used by previous assessments (e.g., WMO, 2014; 

Tummon et al., 2015; Harris et al., 2015; and references 
therein).

Complementary analysis methods and tools are an asset 
as well. Comprehensive approaches that intercompare 
not one or two but many data sets in a coherent way are 
key in attributing issues to a particular data record. The 
Bayesian algorithm BASIC proves more robust against 
outliers than traditional methods to infer the underlying 
ozone time series from a set of (imperfect) data records. 
This recent development has shown clear potential in 
providing insights in more subtle uncertainty patterns 
relevant for trend studies. MC simulations have proven 
useful in estimating the additional trend uncertainty 
related to remaining potential artefacts that cannot be 
cleanly identified and removed as well as how the merg-
ing process deals with these artefacts. For example, 
seemingly statistically significant discrepancies between 
trends derived from two SBUV-based records are found 
to overlap within uncertainty estimates when those es-
timates include the uncertainty of the individual SBUV 
data records propagated through the merging process 
using MC simulations.

The impact of sampling uncertainty on trends is now 
much better understood. This source of uncertainty is 
unrelated to the performance of the instrument and 
becomes only important if the data are analysed at an 
aggregate level sufficiently far away from that of the 
original individual profile measurements. Studies using 
SBUV data showed high correlations between time series 
at individual sites and those averaged in corresponding 
5° latitude belts. The impact of sampling uncertainty is a 
more important issue for the analysis of monthly zonal 
mean ozone values by the sparsely-sampled occultation 
sounders. The interplay of changes in the measurement 
pattern and diurnal and seasonal gradients lead to sys-
tematic changes in derived trends by up to 1–2 % per de-
cade in parts of the stratosphere.

The results described in this chapter are further consid-
ered in the interpretation of the trend results in Chapter 5.


