As part of the RECONCILE campaign, microphysical modelling of the 2009/2010 Arctic winter campaigns was carried out by I. Engel and co-authors in a new ACPD article. They show that including newly developed NAT (Nitric Acid Trihydrate) and ice nucleation parameterisations as well as small-scale temperature fluctuations are vital to reproducing the observed signals of redistribution of water vapour in the Arctic stratosphere under the extremely cold conditions of the 2009/2010 winter. The full abstract can be found here.
Category Archives: News
Science Update: 2001-2010 stratospheric ozone changes: the small role of solar flux variations
In a recent ACP article, S.S. Dhomse and co authors use a chemical transport model (CTM) to show that the stratospheric and lower mesospheric ozone changes during solar cycle 23 (1996-2008) can be reproduced using several different solar spectral flux datasets (SORCE, SSI, SATIRE-S). Model results agree well with both MLS and SABER observations regardless of the solar flux data set used, suggesting that the UV variations detected by SORCE are not necessary to reproduce observed stratospheric ozone changes from 2001-2010 in a CTM. The full abstract can be found here.
Science Update: SPARC Data Initiative: Comparison of water vapour climatologies from satellite limb sounders
Some of the first results from the SPARC Data Initiative to be published, this new article by M.I. Hegglin and co-authors in JGR compares the water vapour climatologies from various satellite limb sounders for the period 1978-2010. Monthly zonal means from LIMS, SAGE II, UARS-MLS, HALOE, POAM III, SMR, SAGE III, MIPAS, SCIAMACHY, ACE-FTS, and Aura-MLS were calculated on a common latitude-pressure grid and then compared with the multi-instrument mean. Evaluations include comparisons of monthly or annual zonal mean cross-sections and seasonal cycles in the tropical and extra-tropical upper troposphere and stratosphere, comparisons of interannual variability, and the study of features such as the water vapour tape recorder. The instruments agree best in the mid-latitude and tropical middle and lower stratosphere, with a relative uncertainty of ±2–6% (as quantified by the standard deviation of the instruments’ multi-annual means). The uncertainty increases toward the polar regions (±10–15%), the mesosphere (±15%), and the upper troposphere/lower stratosphere below 100 hPa (±30–50%), where sampling issues add uncertainty due to large gradients and high natural variability in water vapour. The knowledge gained from these comparisons and regarding the quality of the individual data sets in different regions of the atmosphere will help to improve model-measurement comparisons (e.g., for diagnostics such as the tropical tape recorder or seasonal cycles), data merging activities, and studies of climate variability. The full abstract can be found here.
Science Update: Gravitational separation in the stratosphere – a new indicator of atmospheric circulation
Using high-precision measurements of the isotopic ratios of N2, O2, and Ar, as well as the mole fraction of Ar, S. Ishidoya and co-authors show that gravitational separation occurs in the stratosphere below the turbopause. Observed vertical profiles agree well with those expected theoretically from molecular mass differences. Simulations with a 2D model of the middle atmosphere indicate that a relationship between gravitational separation and stratospheric age-of-air would be significantly affected if the Brewer Dobson Circulation was enhanced. Therefore they suggest that gravitational separation could serve as a new indicator of changes in stratospheric circulation. The full abstract can be found here.
Science Update: Trajectory modelling of UTLS water vapour anomalies
M. Schoeberl and co-authors use forward trajectory modelling to investigate the processes influencing upper tropospheric/lower stratospheric (UTLS) water vapour anomalies. Examining the pathways taken by parcels from the base of the tropical tropopause layer (TTL) upwards, they find that the belt of TTL parcel origins is much wider than the final dehydration zone near the top of the TTL. In the lower stratosphere, the driest air parcels originate from the Tropical West Pacific where they dehydrate in the cold upper troposphere as they move upwards, while the wettest air parcels originate from the edge of this region as well as in the American and Asian monsoon regions in summer. The full abstract can be found here.
Science Update: Southern Hemisphere stationary wave response to changes of ozone and greenhouse gases
Over the last two decades of the 20th century the southern hemisphere stratospheric stationary wave amplitude increased in late spring and early summer. Using the results from several chemistry-climate models, L. Wang and co-authors separate the effects of anthropogenic forcing from ozone-depleting substances (ODSs) and greenhouse gases (GHGs) on these changes. The increase in amplitude is reproduced in simulations with changing ODSs, a response related to changes in the strength and timing of the breakdown of the polar vortex. GHGs have little impact on the simulated stationary wave amplitude, but are projected to induce an eastward shift of the waves, which is linked to the strengthening of the subtropical jet. The full abstract can be found here.
Science Update: Extending water vapour trend observations into the tropopause region: Trend uncertainties and resulting radiative forcing
A recent JGR article by A. Kunz and co-authors uses thirty years of balloon-borne measurements to investigate the water vapour trend in the tropopause region over Boulder, Colorado, USA. They apply two new concepts: trends are presented on a thermal tropopause (TP) relative coordinate system and sonde profiles are selected according to TP height. Although this should reduce the dynamically induced water vapour variability at the TP, their results suggest there is still significant uncertainty in trends at altitudes -2 to +4km around the TP. This uncertainty in turn has an influence on the uncertainty and interpretation of water vapour radiative effects at the TP, which are locally estimated for the 30-year period to be of uncertain sign. Their results also do not indicate any detectable decrease in water vapour at the beginning of 2001. However, on the lower stratospheric isentropes, the water vapour change for this period is stronger for extra-tropical than for tropical air mass types, suggesting a possible link to changing dynamics above the jet stream. The full abstract can be found here.
Science Update: ENSO influence on QBO modulations of the tropical tropopause
W. Yuan and co-authors investigate the influence of the El Niño/Southern Oscillation (ENSO) on the quasi-biennial oscillation (QBO) modulation of cold-point tropopause (CPT) temperatures. Using almost five decades of radiosonde data from eleven near-equatorial stations, they show that the ENSO influence on the QBO is quite zonally symmetric. The data indicate that the QBO has larger amplitude and longer period during La Niña conditions than during El Niño. Their results also indicate that the warmer CPT temperatures during QBO westerly shear conditions and colder temperatures during QBO easterly shear conditions, are larger during La Niña than during El Niño. This strengthens earlier findings that the greatest dehydration of air entering the stratosphere from the troposphere occurs during the winter under La Niña and easterly QBO conditions. The full abstract can be found here.
Science Update: Effects of stratospheric ozone recovery on tropospheric chemistry and air quality
A new ACPD article by H. Zhang and co-authors investigates the effects of recovering stratospheric ozone on tropospheric chemistry and air quality using the global chemistry-transport model GEOS-Chem. They find that surface ozone photolysis rates decrease significantly while ozone lifetime in the troposphere increases by up to 7% and the tropospheric ozone burden increases slightly (0.78%). Perturbations of tropospheric and surface ozone show large seasonal and spatial variations, with increases of up to 5% for some regions. The full abstract can be found here.
Science Update: Are recent Arctic ozone losses caused by increasing greenhouse gases?
Recent Arctic ozone loss has been linked with climate change resulting from increasing greenhouse gases. In a recent GRL paper, H. Rieder and co-authors provide evidence to the contrary, by focusing on the volume of polar stratospheric clouds (PSCs), a simple proxy for polar ozone loss. Analysis of three reanalysis datasets and results from a stratosphere-resolving chemistry-climate model indicate no statistically significant trends in PSC volume, nor any change in their probability density functions, during the period 1979-2011. The full abstract can be found here.